Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство.





На основании аксиомы 4дл любого комплексного числа λ справедливо неравенство (λx-y, λx-y)≥0. Так как в силу аксиом 1-3 и их следствий (λx-y, λx-y)=λλ(x,x)-λ(x,y)-λ(y,x)+(y,y)=|λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y), то неравенство (λx-y, λx-y)≥0 принимает вид |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0.

Обозначим через ϕ аргумент комплексного числа (x,y) и представим это число в тригонометрической форме (x,y)=|(x,y)|(cosϕ+isinϕ). Положим теперь комплексное число λ равным λ=t(cosϕ-isinϕ), где t – произвольное вещественное число.

Из соотношений (x,y)=|(x,y)|(cosϕ+isinϕ) и λ=t(cosϕ-isinϕ) очевидно, что |λ|=|t|, λ(x,y)=λ(x,y)=t|(x,y)|. Поэтому при выбранном нами λ неравенство |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0 переходит в неравенство t2(x,x)-2t|(x,y)|+(y,y)≥0 справедливое при любом вещественном t. Необходимым и достаточным условием неотрицательности квадратного трехчлена, стоящего в левой части этого неравенства, является неположительность его дискриминанта, то есть неравенство |(x,y)|2-(x,x)(y,y)≤0 эквивалентное неравенству |(x,y)|2≤(x,x)(y,y). Теорема доказана.

Всякое комплексное евклидово пространство является нормированным, если в нем норму любого элемента x определить соотношением ||x||=[(x,x)]1/2. В частности, во всяком комплексном евклидовом пространстве с нормой, определяемое соотношением ||x||=[(x,x)]1/2, справедливо неравенство треугольника ||x+y||≤||x||+||y||.

(Понятие угла между двумя произвольными элементами x и y в комплексном евклидовом пространстве теряет смысл, вследствие того, что скалярное произведение (x,y) является комплексным числом)

 

 

  1. Определение линейного оператора. Действие над линейными операторами. Пространство линейных операторов. Нулевой, противоположный и тождественный операторы.

Определение. Оператор A, действующий из V в W (A: V→W), называется линейным, если для любых элементов x1 и x2 пространства V и любого комплексного числа λ выполняются соотношения.

1) A(x1+x2)=Ax1+Ax2 (свойство аддитивности оператора)

2) A(λx)=λAx (свойство однородности оператора)

Если пространство W представляет собой комплексную плоскость, то линейный оператор A, действующий из V в W, называется линейной формой или линейным функционалом.

В множестве всех линейных операторов, действующий из V в W определим операции суммы таких операторов и умножение оператора на скаляр.

Определение. Пусть A и B два линейных оператора, действующих из V в W. Суммой этих операторов называют линейный оператор A+B, определяемый равенством (A+B)x=Ax+Bx.

Определение. Произведением линейного оператора A на скаляр λ называют линейный оператор λA, определяемый равенством (λA)x=λ(Ax).

Определение. Нулевым оператором называют оператор, обозначаемый символом O и отображающий все элементы пространства V в нулевой элемент пространства W. Иными словами, оператор O действует по правилу Ox=0.

Определение. Для каждого оператора A определим противоположный оператор –A посредством соотношения –A=(-1)A. Тогда A+(-A)=0.

Множество L(V,W) Всех линейных операторов, действующих из V в W, с указанными операциями суммы и умножения на скаляр и выбранными нулевым оператором и противоположным оператором образует линейное пространство.

Определение. Тождественным (или единичным) оператором называют линейный оператор I, действующий по правилу Ix=x.

 

  1. Свойства множества линейных операторов L(V,V). Обратный оператор.

Если пространство W совпадает с пространством V, то линейный оператор, действующий в этом случае из V в V, называют также линейным преобразованием пространства V.

Введем понятие произведения линейных операторов из множества L(V,V).

Определение. Произведением операторов A и B из L(V,V) называется оператор AB, действующий по правилу (AB)x=A(Bx) (AB≠BA)







Дата добавления: 2015-09-07; просмотров: 400. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия