Доказательство.
На основании аксиомы 4дл любого комплексного числа λ справедливо неравенство (λx-y, λx-y)≥0. Так как в силу аксиом 1-3 и их следствий (λx-y, λx-y)=λλ(x,x)-λ(x,y)-λ(y,x)+(y,y)=|λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y), то неравенство (λx-y, λx-y)≥0 принимает вид |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0. Обозначим через ϕ аргумент комплексного числа (x,y) и представим это число в тригонометрической форме (x,y)=|(x,y)|(cosϕ+isinϕ). Положим теперь комплексное число λ равным λ=t(cosϕ-isinϕ), где t – произвольное вещественное число. Из соотношений (x,y)=|(x,y)|(cosϕ+isinϕ) и λ=t(cosϕ-isinϕ) очевидно, что |λ|=|t|, λ(x,y)=λ(x,y)=t|(x,y)|. Поэтому при выбранном нами λ неравенство |λ|2(x,x)-λ(x,y)-λ(x,y)+(y,y)≥0 переходит в неравенство t2(x,x)-2t|(x,y)|+(y,y)≥0 справедливое при любом вещественном t. Необходимым и достаточным условием неотрицательности квадратного трехчлена, стоящего в левой части этого неравенства, является неположительность его дискриминанта, то есть неравенство |(x,y)|2-(x,x)(y,y)≤0 эквивалентное неравенству |(x,y)|2≤(x,x)(y,y). Теорема доказана. Всякое комплексное евклидово пространство является нормированным, если в нем норму любого элемента x определить соотношением ||x||=[(x,x)]1/2. В частности, во всяком комплексном евклидовом пространстве с нормой, определяемое соотношением ||x||=[(x,x)]1/2, справедливо неравенство треугольника ||x+y||≤||x||+||y||. (Понятие угла между двумя произвольными элементами x и y в комплексном евклидовом пространстве теряет смысл, вследствие того, что скалярное произведение (x,y) является комплексным числом)
Определение. Оператор A, действующий из V в W (A: V→W), называется линейным, если для любых элементов x1 и x2 пространства V и любого комплексного числа λ выполняются соотношения. 1) A(x1+x2)=Ax1+Ax2 (свойство аддитивности оператора) 2) A(λx)=λAx (свойство однородности оператора) Если пространство W представляет собой комплексную плоскость, то линейный оператор A, действующий из V в W, называется линейной формой или линейным функционалом. В множестве всех линейных операторов, действующий из V в W определим операции суммы таких операторов и умножение оператора на скаляр. Определение. Пусть A и B два линейных оператора, действующих из V в W. Суммой этих операторов называют линейный оператор A+B, определяемый равенством (A+B)x=Ax+Bx. Определение. Произведением линейного оператора A на скаляр λ называют линейный оператор λA, определяемый равенством (λA)x=λ(Ax). Определение. Нулевым оператором называют оператор, обозначаемый символом O и отображающий все элементы пространства V в нулевой элемент пространства W. Иными словами, оператор O действует по правилу Ox=0. Определение. Для каждого оператора A определим противоположный оператор –A посредством соотношения –A=(-1)A. Тогда A+(-A)=0. Множество L(V,W) Всех линейных операторов, действующих из V в W, с указанными операциями суммы и умножения на скаляр и выбранными нулевым оператором и противоположным оператором образует линейное пространство. Определение. Тождественным (или единичным) оператором называют линейный оператор I, действующий по правилу Ix=x.
Если пространство W совпадает с пространством V, то линейный оператор, действующий в этом случае из V в V, называют также линейным преобразованием пространства V. Введем понятие произведения линейных операторов из множества L(V,V). Определение. Произведением операторов A и B из L(V,V) называется оператор AB, действующий по правилу (AB)x=A(Bx) (AB≠BA)
|