Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Докажем сначала существование оператора A





Докажем сначала существование оператора A. Для этой ели определим значение Aek этого оператора на базисных векторах ek с помощью соотношения Aeknj=1αjkej, полагая в этом соотношении αjk равными соответствующим элементам заданной матрицы A. Значение оператора A на произвольном векторе xєA, разложение которого по базисным векторам e1, e2,…, en дается формулой x=Ʃnk=1xkek, определим по формуле Ax=Ʃnk=1xkAek. Очевидно, построенный оператор линейный и матрицей этого оператора является матрица A. Единственность оператора A, матрицей которого в базисе e1, e2,…, en является матрица A, следует из соотношения Aeknj=1αjkej: с помощью этих соотношений единственным образом определяются значения оператора на базисных векторах. Теорема доказана.

 

  1. Преобразование матрицы линейного оператора при переходе к новому базису.

Пусть V – линейное пространство, A - линейный оператор из L(V,V), e1, e2,…, en и e1, e2,…, en – два базиса в V и ekni=1uikei k=1, 2,…, n – формулы перехода от базиса {ei} к базису {ek}. Обозначим через U матрицу uik: U=(uik) – матрица перехода от старого базиса к новому. Отметим, что rangU=n.

Пусть A=(αik) и A=(αik) – матрицы оператора A в указанных базисах. Найдем связь между этими матрицами.

Теорема. Матрицы A и A оператора A в базисах {ei} и {ek} соответственно связаны соотношением A=U-1AU, где U-1 – обратная матрица для матрицы U, определенной равенством U=(uik).







Дата добавления: 2015-09-07; просмотров: 358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия