Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Докажем сначала существование оператора A





Докажем сначала существование оператора A. Для этой ели определим значение Aek этого оператора на базисных векторах ek с помощью соотношения Aeknj=1αjkej, полагая в этом соотношении αjk равными соответствующим элементам заданной матрицы A. Значение оператора A на произвольном векторе xєA, разложение которого по базисным векторам e1, e2,…, en дается формулой x=Ʃnk=1xkek, определим по формуле Ax=Ʃnk=1xkAek. Очевидно, построенный оператор линейный и матрицей этого оператора является матрица A. Единственность оператора A, матрицей которого в базисе e1, e2,…, en является матрица A, следует из соотношения Aeknj=1αjkej: с помощью этих соотношений единственным образом определяются значения оператора на базисных векторах. Теорема доказана.

 

  1. Преобразование матрицы линейного оператора при переходе к новому базису.

Пусть V – линейное пространство, A - линейный оператор из L(V,V), e1, e2,…, en и e1, e2,…, en – два базиса в V и ekni=1uikei k=1, 2,…, n – формулы перехода от базиса {ei} к базису {ek}. Обозначим через U матрицу uik: U=(uik) – матрица перехода от старого базиса к новому. Отметим, что rangU=n.

Пусть A=(αik) и A=(αik) – матрицы оператора A в указанных базисах. Найдем связь между этими матрицами.

Теорема. Матрицы A и A оператора A в базисах {ei} и {ek} соответственно связаны соотношением A=U-1AU, где U-1 – обратная матрица для матрицы U, определенной равенством U=(uik).







Дата добавления: 2015-09-07; просмотров: 358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия