Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-распределение Фишера.





Плотность вероятностей для случайной величины имеет вид:


26. Распределение Вейбулла – Гнеденко.

Широко используется при оценках надежности и риска.

Случайная величина имеет распределение Вейбулла с параметрами и k, если ее функция распределения:

 

Полиномиальное распределение (мультиномиальное распределение).

Совместное распределение вероятностей случайных величин

принимающих целые неотрицательные значения

удовлетворяющие условиям

с вероятностями

где , ; является многомерным дискретным распределением случайного вектора такого, что: (по существу это распределение является (k − 1)-мерным, так как в пространстве оно вырождено); естественным (с точки зрения современной теории вероятностей)

 

1. Вырожденное распределение.

Говорят, что случайная величина имеет вырожденное распределение в точке a R, если принимает единственное значение a с вероятностью 1, т.е. P( =a)=1.

Функция распределения имеет вид

F (x) = P ( <x) =P(a<x) =

Параметры:

 

1.Математическое ожидание

M(x) =

M(x) = a∙1=a

2.Дисперсия

=M( -a) =

=(a-a) ∙1=0

3.Характеристическая функция

f (t)=

f (t)= =

4.Начальный момент r-го порядка

= , r=1,2,3,…

= =

5.Абсолютный момент r-го порядка

=M(│x│ )=
= =

6.Факториальный момент r-го порядка

f =M(x ) =
f =

7.Центральный момент r-го порядка

=

=(a-a) ∙1=0

8.Медиана

9.Мода







Дата добавления: 2015-10-01; просмотров: 878. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия