Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Бернулли.




Говорят, что случайная величина имеет распределение Бернулли с параметром p , если принимает значения 1 и 0 с вероятностями p и 1-p=q соответственно. Случайная величина с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью успеха p : ни одного успеха или один успех. Таблица распределения имеет вид:

 

Функция распределения случайной величины такова:

 

Параметры:

 

1.Математическое ожидание

M(x) = 0∙(1-p)+1∙p=p

2.Дисперсия

=(0-p) ∙(1-p)+(1-p) ∙p=(p) ∙(1-p)+(1-p) ∙p=(1-p)∙( p +(1-p) ∙p)=p- p =pq

3.Характеристическая функция

f (t)= + = 1-p+ =q+

4.Начальный момент r-го порядка

= =p

5.Абсолютный момент r-го порядка
=p

6.Факториальный момент r-го порядка

f =p

7.Центральный момент r-го порядка

=

= (0- ) ∙(1-p)+ (1- ) ∙p=( ) ∙(1-p+p)= (0.5)

8.Медиана

нет

9.Мода

max(p,q)

Биноминальное распределение.

Для биномиального распределения вероятность принятия случайной величиной Y значения y определяется формулой

где

число сочетаний из n элементов по y, известное из комбинаторики.

Для всех y, кроме 0, 1, 2, …, n, имеем

P(Y=y)=0.

Функция распределения имеет вид:

Параметры:

 

1.Математическое ожидание

M(y) = np

2.Дисперсия

= np (1-p)= npq

3.Характеристическая функция

f (t)=

4.Начальный момент r-го порядка

= =

5.Абсолютный момент r-го порядка

= =

6.Факториальный момент r-го порядка
f =

7.Центральный момент r-го порядка

=(a-a) ∙1=0

8.Медиана

Одно из

9.Мода

(n+1)p

 

 







Дата добавления: 2015-10-01; просмотров: 944. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия