Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнивание нивелирных полигонов





 

Ходы технического нивелирования разделяются на две основные группы: свободные системы и несвободные системы.

Свободные системы характеризуются наличием в каждой из них лишь одного пункта с твердой отметкой.

Несвободные системы опираются на два и большее число твердых пунктов.

Свободные системы прокладываются в виде одиночного замкнутого полигона или в виде систем замкнутых полигонов. Иногда прокладываются висячие ходы, опирающиеся на один пункт с известной отметкой. В этих случаях нивелирование по ходу выполняется в прямом и обратном направлениях или двумя нивелирами в одном направлении.

Несвободные системы представляют собой одиночные ходы, опирающиеся на концах на два пункта с твердыми отметками, или образуют системы ходов с одной или несколькими узловыми точками, опирающиеся на твердые пункты. При уравнивании несвободной сети вводятся фиктивные звенья, соединяющие исходные реперы (пунктиром). Фиктивные звенья намечают так, чтобы они не пересекали действительные и чтобы дополнительные полигоны имели наименьшее число действительных звеньев. В результате получаются дополнительные полигоны.

При вычислениях системы замкнутых свободных полигонов технического нивелирования наиболее рациональным является применение способа полигонов проф. В.В. Попова. Сущность уравнивания сводится к последовательному распределению невязок в полигонах пропорционально красным числам. Быстрота сходимости приближений в методе полигонов зависит от знаков невязок и их величины в смежных полигонах.

Уравнивание системы замкнутых свободных полигонов рассмотрим на примере. Система из шести ходов технического нивелирования с четырьмя узловыми точками (в числе которых одна – стенная марка 1 – является твердой) образует три замкнутых полигона. Каждый полигон в сети граничит не менее, чем с двумя другими полигонами.

Составляется схема ходов (рисунок 37), на которой приводятся все данные, необходимые для уравнивания: суммарные превышения по звеньям, hм; длина звеньев Lкм и отметка исходной марки Нстен. марки 1 = 52,130 м.

Рисунок 37 Схема свободной сети нивелирных полигонов

 

Как в свободных, так и в несвободных системах количество полигонов определяется по формуле:

r = N + T – 1(241)

где N – число сомкнутых полигонов; Т – число исходных реперов.

В нашем примере r = 3 + 1 – 1 = 3

Уравнивание выполняется в следующей последовательности.

1. Подсчитывают фактические невязки в превышениях по каждому полигону, соответствующие обходу полигона по ходу часовой стрелки, по формулам:

в замкнутых полигонах fh = åh (242)

в разомкнутых fh = åh – (Нк – Нн) (243)

и суммарные длины звеньев (периметр полигона) åL. Подсчитывают допустимые невязки по формулам:

для технического нивелирования fh доп = ± 50 мм Ö Lкм (244)

для нивелирования IV класса fh доп = ± 20 мм Ö Lкм (245)

Результаты этих вычислений записывают на том же чертеже. Римскими цифрами нумеруют полигоны вначале сомкнутые, а потом разомкнутые.

2. Убедившись в допустимости невязок, переходят к уравниванию сети. Для этого строят рабочий чертеж сети более крупных размеров, на котором и производят уравнивание (рисунок 38).

 

Рисунок 38 Рабочая схема

 

3. На рабочем чертеже в центре каждого полигона строят двойные рамочки, над которыми римскими цифрами пишут номера полигонов, а внутри – вычисленные невязки fh в мм. Затем вне каждого полигона у каждого звена строят рамочки для записи поправок. Таким образом, у внешних звеньев будет по одной, а у внутренних – по две рамочки (по одной с каждой стороны звена). На фиктивные звенья рамочки не строят.

4. Для каждого звена вычисляют красные числа

(246)

Красное число – это отношение длины звена к периметру полигона.

Контроль: Сумма красных чисел для полигона должна равняться единице. Красные числа подписывают над соответствующими рамочками, расположенными вне полигона около его звеньев красным цветом.

Так в полигоне I красные числа равны

6,3: 12,6 = 0,50; 3,4: 12,6 = 0,27; 2,9: 12,6 = 0,23

Контроль вычислений: 0,50 + 0,27 + 0,23 = 1.0

5. Распределение невязок начинают с I полигона. Умножив невязку (+21) на его красные числа, полученные результаты, сумма которых должна быть равна распределяемой невязке, записывают в соответствующих данному полигону табличках. Распределенную невязку подчеркивают.

В I полигоне +21 ´ 0,50 = +10 +21 ´ 0,27 = + 6; 21 ´ 0,23 = + 5

Контроль вычислений: +10 +6 +5 = 21

6. Находят значение невязки во II полигоне, учитывая поправку из первого полигона (- 18 + 6 = -12). Учтенную невязку подчеркивают. Новую невязку распределяют пропорционально красным числам II полигона (0,46; 0,33; 0,21) и полученные результаты (- 5; - 4; - 3), сумма которых должна быть равна невязке, записывают во внешних к полигону табличках под соответствующими красными числами. Распределенную невязку подчеркивают.

7. Находят новую невязку III полигона, учитывая поправки из I и II полигонов (- 17 – 3 -+ 5 = - 15). Учтенные поправки подчеркивают. Откорректированную невязку - 15 распределяют таким же путем, как и в первых двух полигонах и подчеркивают.

8. Далее переходят ко второму кругу распределения невязок. Здесь появилась новая невязка, равная сумме поправок, перешедших из смежных полигонов. Эта невязка распределяется так же, как и первый раз.

Закончив первый цикл распределения невязок, приступают ко второму, затем к третьему и так далее до тех пор, пока все невязки полигонов станут равными нулю. Следует помнить, что во избежание повторного использования одной и той же величины в процессе распределения невязок, каждое использованное значение необходимо сразу же подчеркнуть.

9. Находят окончательное значение поправок. Подсчитывают алгебраическую сумму поправок в каждой табличке. Для внешних ходов эти суммы, взятые с обратным знаком, будут окончательными поправками. Их выписывают в скобках внутри полигонов: в первом полигоне -8, во втором + 8, в третьем + 9. Для каждого общего хода двух смежных полигонов имеются по две таблички, расположение по разные стороны хода. Внешние суммы полигона переносят внутрь полигона с противоположным знаком и складывают с его внутренними суммами для тех же звеньев. Полученные поправки записывают в скобках около соответствующих звеньев. Около внутренних звеньев сети поправки записывают по обе стороны звена.

10. В каждом полигоне сумма поправок на звенья должна быть равна невязке полигона с обратным знаком, например

I полигон - 3 – 10 – 8 = - 21 = - (+ 21)

II полигон +10 + 8 + 0 = + 18 = - (- 18)

III полигон 0 + 9 + 8 = + 17 = - (- 17).

11. Введя поправки в измеренные превышения, получают исправленные их значения, по которым вычисляют отметки узловых точек (таблица 7).

 

Таблица 7 – Вычисление отметок узловых точек

 

Точки Измеренные превышения по звеньям, м Поправки на звенья, мм Исправленные превышения, м Отметки, м
        52,130
  + 9,132 - 3 + 9,129  
В       61,259
  - 6,291 - 10 - 6,301  
С       54,958
  + 0,682   + 0,682  
D       55,640
  - 3,519 + 9 - 3,510  
        52,130
  + 0,004 - 4    

 

12. Производится оценка точности. Средняя квадратическая погрешность превышения на 1 км нивелирного хода m вычисляется (таблица 8) по формуле

(247)

где Рi = ; L – длина звеньев в км; n – число полигонов

Таблица 8 Определение средней квадратической погрешности превышения на 1 км нивелирного хода

 

Ход Длина хода L, км Рi = V, мм V2 РV2
1 – В 6,3 0,16 - 3   1,4
В – С 3,4 0,30 - 10   30,0
С – 1 2,9 0,35 - 8   22,4
С – D 2,1 0,48     0,0
1 – D 4,1 0,24 - 9   19,4
D – В 4,7 0,21 - 8   14,5
          87,7

Средняя квадратическая погрешность превышения на 1 км нивелирного хода равна

мм.

 







Дата добавления: 2015-10-01; просмотров: 3577. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия