Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальное уравнение упругой линии





 

Зависимость кривизны 1/r изогнутой оси бруса от изгибающего момента Мx выражается формулой [1, 2]:

(5.3)

где Е – модуль упругости первого рода материала бруса; Jх – момент инерции его поперечного сечения относительно нейтральной оси х.

Произведение EJх условно называют жесткостью сечения при
изгибе.

В случае чистого изгиба балки постоянного сечения
1/r = Мх/(ЕJх) = const, то есть балка изгибается по дуге окружности радиусом r.

Однако при поперечном изгибе 1/r ≠ const, кривизна изменяется по тому же закону, по которому изменяется величина Мх(z)/(ЕJх). При этом влиянием поперечной силы Qу на величину кривизны пре-небрегают.

Непосредственно применить формулу (5.3) для определения прогибов при поперечном изгибе затруднительно. Поэтому используют известное из математического анализа выражение кривизны:

1/r = у"/[1+(y')2]3/2, (5.4)

где y'(z) ≈ j(z). Для балок большой жесткости есть малая величина, измеряемая тысячными долями радиана. На этом основании (y')2<<1, и потому

1/r ≈ у"(z), (5.5)

то есть кривизна с достаточной для практических целей точностью равна второй производной от функции прогибов y(z).

Подставив (5.5) в (5.3), получаем приближенное дифференциальное уравнение упругой линии:

у"(z) = Мх/(ЕJх). (5.6)

Для балки постоянного сечения его обычно записывают в виде:

ЕJх·у"(z) = Мх(z). (5.7)

Интегрируя это уравнение, получаем общие выражения для углов поворота сечений и прогибов на участке балки, для которого составлено аналитическое выражение изгибающего момента Мх(z):

Постоянные интегрирования С и D определяют из граничных условий. После их определения становится возможным вычисление перемещений любого заданного сечения.

Пример 5.1. Определить угол поворота сечения С и максимальный прогиб балки (рис. 5.2).

 

 

Рисунок 5.2 – Расчетная схема к примеру 5.1

 

Решение: реакции опор, найденные из уравнений равновесия статики, показаны на рис. 5.2.

Балка имеет два участка: I и II. Аналитические выражения изгибающих моментов:

Дифференциальные уравнения упругой линии по участкам:

В результате их интегрирования имеем:

Для определения четырех постоянных С1, С2, D1, D2 имеем четыре граничных условия:

1) y1(0) = 0; 2) y'1 (a) = y'2 (a); 3) y1(a) = y2(a); 4) y2(ℓ) = 0.

Из условия 1 находим D1 = 0.

Из условия 2: С1 = С2; из условия 3: D1 = D2.

Условие 4 с учетом того, что D2 = D1 = 0, дает:

Окончательно получаем уравнения углов поворота сечений и прогибов балки в следующем виде:

Угол поворота сечения С:

В сечении, в котором прогиб максимален, касательная к упругой линии параллельна оси Oz, то есть j (z0) = 0, где z0 – координата этого сечения.

Пусть b > a, тогда из рис. 5.2 следует, что z0 > a.

Из уравнения углов поворота сечений для второго участка, полагая y'2(z0) = 0, находим:

Подставив найденное значение z0 в выражения для y2(z), получаем наибольшее значение прогиба:

 

Знак (–) указывает на то, что центр тяжести поперечного сечения перемещается в отрицательном направлении оси Oy, то есть вниз.

В случае, если a > b, аналогично получаем:

 

В рассмотренном примере постоянные интегрирования были найдены сравнительно легко. Однако при большом числе участков задача их определения из граничных условий существенно усложняется, так как возникает необходимость в совместном решении большого числа алгебраических уравнений: для балки с n участками нужно составить и совместно решить 2n уравнений.

Поэтому для определения перемещений чаще применяют другие методы, отличающиеся меньшей трудоемкостью.







Дата добавления: 2015-10-02; просмотров: 1156. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия