Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальное уравнение упругой линии





 

Зависимость кривизны 1/r изогнутой оси бруса от изгибающего момента Мx выражается формулой [1, 2]:

(5.3)

где Е – модуль упругости первого рода материала бруса; Jх – момент инерции его поперечного сечения относительно нейтральной оси х.

Произведение EJх условно называют жесткостью сечения при
изгибе.

В случае чистого изгиба балки постоянного сечения
1/r = Мх/(ЕJх) = const, то есть балка изгибается по дуге окружности радиусом r.

Однако при поперечном изгибе 1/r ≠ const, кривизна изменяется по тому же закону, по которому изменяется величина Мх(z)/(ЕJх). При этом влиянием поперечной силы Qу на величину кривизны пре-небрегают.

Непосредственно применить формулу (5.3) для определения прогибов при поперечном изгибе затруднительно. Поэтому используют известное из математического анализа выражение кривизны:

1/r = у"/[1+(y')2]3/2, (5.4)

где y'(z) ≈ j(z). Для балок большой жесткости есть малая величина, измеряемая тысячными долями радиана. На этом основании (y')2<<1, и потому

1/r ≈ у"(z), (5.5)

то есть кривизна с достаточной для практических целей точностью равна второй производной от функции прогибов y(z).

Подставив (5.5) в (5.3), получаем приближенное дифференциальное уравнение упругой линии:

у"(z) = Мх/(ЕJх). (5.6)

Для балки постоянного сечения его обычно записывают в виде:

ЕJх·у"(z) = Мх(z). (5.7)

Интегрируя это уравнение, получаем общие выражения для углов поворота сечений и прогибов на участке балки, для которого составлено аналитическое выражение изгибающего момента Мх(z):

Постоянные интегрирования С и D определяют из граничных условий. После их определения становится возможным вычисление перемещений любого заданного сечения.

Пример 5.1. Определить угол поворота сечения С и максимальный прогиб балки (рис. 5.2).

 

 

Рисунок 5.2 – Расчетная схема к примеру 5.1

 

Решение: реакции опор, найденные из уравнений равновесия статики, показаны на рис. 5.2.

Балка имеет два участка: I и II. Аналитические выражения изгибающих моментов:

Дифференциальные уравнения упругой линии по участкам:

В результате их интегрирования имеем:

Для определения четырех постоянных С1, С2, D1, D2 имеем четыре граничных условия:

1) y1(0) = 0; 2) y'1 (a) = y'2 (a); 3) y1(a) = y2(a); 4) y2(ℓ) = 0.

Из условия 1 находим D1 = 0.

Из условия 2: С1 = С2; из условия 3: D1 = D2.

Условие 4 с учетом того, что D2 = D1 = 0, дает:

Окончательно получаем уравнения углов поворота сечений и прогибов балки в следующем виде:

Угол поворота сечения С:

В сечении, в котором прогиб максимален, касательная к упругой линии параллельна оси Oz, то есть j (z0) = 0, где z0 – координата этого сечения.

Пусть b > a, тогда из рис. 5.2 следует, что z0 > a.

Из уравнения углов поворота сечений для второго участка, полагая y'2(z0) = 0, находим:

Подставив найденное значение z0 в выражения для y2(z), получаем наибольшее значение прогиба:

 

Знак (–) указывает на то, что центр тяжести поперечного сечения перемещается в отрицательном направлении оси Oy, то есть вниз.

В случае, если a > b, аналогично получаем:

 

В рассмотренном примере постоянные интегрирования были найдены сравнительно легко. Однако при большом числе участков задача их определения из граничных условий существенно усложняется, так как возникает необходимость в совместном решении большого числа алгебраических уравнений: для балки с n участками нужно составить и совместно решить 2n уравнений.

Поэтому для определения перемещений чаще применяют другие методы, отличающиеся меньшей трудоемкостью.







Дата добавления: 2015-10-02; просмотров: 1156. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия