Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальное уравнение упругой линии





 

Зависимость кривизны 1/r изогнутой оси бруса от изгибающего момента Мx выражается формулой [1, 2]:

(5.3)

где Е – модуль упругости первого рода материала бруса; Jх – момент инерции его поперечного сечения относительно нейтральной оси х.

Произведение EJх условно называют жесткостью сечения при
изгибе.

В случае чистого изгиба балки постоянного сечения
1/r = Мх/(ЕJх) = const, то есть балка изгибается по дуге окружности радиусом r.

Однако при поперечном изгибе 1/r ≠ const, кривизна изменяется по тому же закону, по которому изменяется величина Мх(z)/(ЕJх). При этом влиянием поперечной силы Qу на величину кривизны пре-небрегают.

Непосредственно применить формулу (5.3) для определения прогибов при поперечном изгибе затруднительно. Поэтому используют известное из математического анализа выражение кривизны:

1/r = у"/[1+(y')2]3/2, (5.4)

где y'(z) ≈ j(z). Для балок большой жесткости есть малая величина, измеряемая тысячными долями радиана. На этом основании (y')2<<1, и потому

1/r ≈ у"(z), (5.5)

то есть кривизна с достаточной для практических целей точностью равна второй производной от функции прогибов y(z).

Подставив (5.5) в (5.3), получаем приближенное дифференциальное уравнение упругой линии:

у"(z) = Мх/(ЕJх). (5.6)

Для балки постоянного сечения его обычно записывают в виде:

ЕJх·у"(z) = Мх(z). (5.7)

Интегрируя это уравнение, получаем общие выражения для углов поворота сечений и прогибов на участке балки, для которого составлено аналитическое выражение изгибающего момента Мх(z):

Постоянные интегрирования С и D определяют из граничных условий. После их определения становится возможным вычисление перемещений любого заданного сечения.

Пример 5.1. Определить угол поворота сечения С и максимальный прогиб балки (рис. 5.2).

 

 

Рисунок 5.2 – Расчетная схема к примеру 5.1

 

Решение: реакции опор, найденные из уравнений равновесия статики, показаны на рис. 5.2.

Балка имеет два участка: I и II. Аналитические выражения изгибающих моментов:

Дифференциальные уравнения упругой линии по участкам:

В результате их интегрирования имеем:

Для определения четырех постоянных С1, С2, D1, D2 имеем четыре граничных условия:

1) y1(0) = 0; 2) y'1 (a) = y'2 (a); 3) y1(a) = y2(a); 4) y2(ℓ) = 0.

Из условия 1 находим D1 = 0.

Из условия 2: С1 = С2; из условия 3: D1 = D2.

Условие 4 с учетом того, что D2 = D1 = 0, дает:

Окончательно получаем уравнения углов поворота сечений и прогибов балки в следующем виде:

Угол поворота сечения С:

В сечении, в котором прогиб максимален, касательная к упругой линии параллельна оси Oz, то есть j (z0) = 0, где z0 – координата этого сечения.

Пусть b > a, тогда из рис. 5.2 следует, что z0 > a.

Из уравнения углов поворота сечений для второго участка, полагая y'2(z0) = 0, находим:

Подставив найденное значение z0 в выражения для y2(z), получаем наибольшее значение прогиба:

 

Знак (–) указывает на то, что центр тяжести поперечного сечения перемещается в отрицательном направлении оси Oy, то есть вниз.

В случае, если a > b, аналогично получаем:

 

В рассмотренном примере постоянные интегрирования были найдены сравнительно легко. Однако при большом числе участков задача их определения из граничных условий существенно усложняется, так как возникает необходимость в совместном решении большого числа алгебраических уравнений: для балки с n участками нужно составить и совместно решить 2n уравнений.

Поэтому для определения перемещений чаще применяют другие методы, отличающиеся меньшей трудоемкостью.







Дата добавления: 2015-10-02; просмотров: 1156. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия