Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая на плоскости





 

Утверждение. Любое уравнение первой степени на плоскости – есть прямая.

Уравнение

(4)

есть общее уравнение прямой.

При уравнение

.

Переобозначив

получим

– это прямая, параллельная оси , если , то

.

Переобозначим

,

тогда

– это прямая, параллельная оси .

– уравнение оси (оси абсцисс).

– уравнение оси (оси ординат).

эЧтобы убедиться лежит ли точка на прямой, необходимо подставить координаты точки в уравнение этой прямой.

Пример 1. Принадлежат ли точки и прямой .

Решение. Точка принадлежит прямой, так как

,

а точка не принадлежит прямой, так как

.

Чтобы узнать координаты точки пересечения двух прямых, нужно совместно прорешать систему уравнений, определяющих эти прямые

.

Если

,

то есть коэффициенты в уравнениях прямых не пропорциональны, то прямые пресекаются в одной точке.

Если коэффициенты при неизвестных в уравнениях прямых и свободные члены пропорциональны, то прямые сливаются (система имеет бесчисленное множество решений).

Если коэффициенты пропорциональны, а свободные члены нет, то прямые параллельны (система решений не имеет).

Из уравнения (4) выразим «»

. (5)

Переобозначим через

, ,

тогда уравнение (5) примет вид:

(8)

уравнение прямой с угловым коэффициентом , где – угол между прямой и положительным направлением оси , и «» – отрезок , где точка , точка (рисунок 17).

Рисунок 17

 

Пусть прямая проходит через точку , тогда координаты этой точки удовлетворяют уравнению прямой (7) тождественно, то есть

. (8)

Вычтем из равенства (7) равенство (8), получим

. (9)

Это уравнение прямой, проходящей через точку с угловым коэффициентом .

Пусть прямая проходит через две точки и .

Возьмем текущую точку , лежащую на этой же прямой (рисунок 18).

Рисунок 18

 

Векторы и лежат на одной прямой. Координаты их пропорциональны, то есть

. (10)

Это уравнение прямой, проходящей через две точки.

 

 


 







Дата добавления: 2015-10-12; просмотров: 619. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия