Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 2.





Рисунок 22 – Плоскость Рисунок 23 – Плоскость Рисунок 24 – Плоскость

Уравнение – плоскость .

Уравнение – плоскость .

Уравнение – плоскость .

Задача 1. Через точку проведем плоскость , перпендикулярную вектору (рисунок 25).

Рисунок 25

 

Для решения этой задачи на плоскости возьмем текущую точку . Векторы и перпендикулярны, значит их скалярное произведение равно нулю, то есть

. (19)

Это уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Вектор , перпендикулярный плоскости , называется нормалью плоскости.

Преобразуем уравнение (19):

и переобозначим через

.

Получим уравнение (18).

Задача 2. Через три точки провести плоскость.

Пусть даны точки ; ; и для вывода уравнения возьмем четвертую точку – текущую (рисунок 26).

Рисунок 26

Проведем векторы , и . И так как эти векторы компланарны, то их смешанное произведение равно нулю, то есть

. (20)

Задача 3. Пусть плоскость отсекает на осях ; ; соответственно отрезки ; ; , то есть плоскость проходит через три точки ; ; (рисунок 27).

Рисунок 27

 

Подставив координаты этих точек в уравнение (20), получим:

.

Раскроем определитель и получим

или .

Поделим обе части на , получим

(21)

уравнение плоскости в отрезках.

Если умножить обе части общего уравнения (18) на нормирующий множитель , взяв его со знаком, противоположным знаку свободного члена, то получим уравнение плоскости

, (22)

которое называется нормальным. Где углы ; ; и – это углы между векторами нормали плоскости с соответствующими осями ; ; .

Расстояние от точки до плоскости находят по формулам:

(23)

или

, (24)

подставив координаты точки в нормальное уравнение плоскости.

Под углом между плоскостями и понимается один из двугранных углов, образованных этими плоскостями.

Двугранный угол измеряется линейным, например, это угол , который равен углу между нормалями, как углы с соответственно перпендикулярными сторонами (рисунок 28).

Рисунок 28

 

Так что, если заданы две плоскости:

: , .

: , , то

.

В координатной форме:

. (25)

Если плоскости перпендикулярны, то и их нормали , но тогда . Тогда

(26)

– условие перпендикулярности двух плоскостей.

А если плоскости параллельны, то и их нормальные векторы , значит, координаты этих векторов будут пропорциональны, то есть

(27)

– это условие параллельности двух плоскостей.

 







Дата добавления: 2015-10-12; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия