Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Второй способ приведения уравнений эллипса и гиперболы к каноническому виду через собственные числа и собственные векторы квадратичной формы





 

Рассмотрим на примере.

Пример 5 (676).

.

.

Решение.

1. Выделим квадратичную форму в уравнении:

,

.

2. Составляем матрицу этой квадратичной формы:

,

– кривая гиперболического типа.

3. Находим собственные числа и собственные векторы этой матрицы. Для этого составляем характеристичекое уравнение:

,

.

4. Находим координаты собственных векторов.

При

.

При

.

5. Нормируем векторы и . Для этого находим их длину:

.

6. Находим координаты единичных векторов:

и .

7. Составляем ортонормированную матрицу (координаты единичных векторов записаны в столбец):

.

8. Переходим к новым координатам.

Из первой строки матрицы имеем:

.

Из второй строки матрицы :

.

9. Новые координаты подставим в исходное уравнение. После тождественных преобразований получаем в квадратичной форме коэффициент при «» равен меньшему собственному числу (), а коэффициент при «» равен большему собственному числу (). Слагаемое с «» исчезает. Об этом надо помнить и пользоваться, так что новые координаты в исходное уравнение подставлять только в оставшуюся от квадратичной формы часть, то есть:

.

После приведения подобных, имеем:

,

,

,

.

Данная линия представляет собой гиперболу с центром в точке и действительной осью .







Дата добавления: 2015-10-12; просмотров: 439. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия