Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям. Если функции и имеют непрерывные производные на отрезке , то имеет место формула





Если функции и имеют непрерывные производные на отрезке , то имеет место формула

.

Пример 47. Вычислить интеграл .

Решение.

Применим метод интегрирования по частям: , тогда

Интегрирование четных и нечетных функций в симметричных пределах

Пусть функция непрерывна на отрезке , симметричном относительно точки .

Докажем, что, если функция нечетная, то есть , то

.

Разобьем отрезок на две части: и . Тогда по свойству аддитивности интеграла запишем

(13)

Применим к первому интегралу подстановку , тогда , если , то и если , то . Тогда

.

Используя свойство определенного интеграла , перепишем интеграл в виде:

и подставим в равенство (13), получим

поскольку определенный интеграл не зависит от обозначения переменной интегрирования, то .

Пусть функция четная на . Докажем, что – .

Запишем интеграл в виде суммы двух интегралов

.

К первому интегралу применим подстановку , тогда , если , то и если , то ; – для четной функции.

,

подставляем в равенство (12):

.

 

Несобственные интегралы

Определенные интегралы от непрерывной функции, но с бесконечным промежутком интегрирования или определенные интегралы с конечным промежутком интегрирования, но от неограниченной функции, называются несобственными интегралами.

 







Дата добавления: 2015-10-12; просмотров: 693. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия