Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям. Если функции и имеют непрерывные производные на отрезке , то имеет место формула





Если функции и имеют непрерывные производные на отрезке , то имеет место формула

.

Пример 47. Вычислить интеграл .

Решение.

Применим метод интегрирования по частям: , тогда

Интегрирование четных и нечетных функций в симметричных пределах

Пусть функция непрерывна на отрезке , симметричном относительно точки .

Докажем, что, если функция нечетная, то есть , то

.

Разобьем отрезок на две части: и . Тогда по свойству аддитивности интеграла запишем

(13)

Применим к первому интегралу подстановку , тогда , если , то и если , то . Тогда

.

Используя свойство определенного интеграла , перепишем интеграл в виде:

и подставим в равенство (13), получим

поскольку определенный интеграл не зависит от обозначения переменной интегрирования, то .

Пусть функция четная на . Докажем, что – .

Запишем интеграл в виде суммы двух интегралов

.

К первому интегралу применим подстановку , тогда , если , то и если , то ; – для четной функции.

,

подставляем в равенство (12):

.

 

Несобственные интегралы

Определенные интегралы от непрерывной функции, но с бесконечным промежутком интегрирования или определенные интегралы с конечным промежутком интегрирования, но от неограниченной функции, называются несобственными интегралами.

 







Дата добавления: 2015-10-12; просмотров: 693. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия