Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных уравнений методом Жордана-Гаусса





Пример 1. Решить систему методом Жордана-Гаусса

Решение:

1-й шаг. По данным системы составим таблицу. Выбираем разрешающий элемент , для удобства вычислений берем . Все элементы первой строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.
базис
      -1    
  -2        
      -2    
    -1    
  -6 -1     -3
  -1 -1 -1   -3
-10       -2
    -4    
      -5    
-3       -2
         
-1        

 

Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Переходим к следующему шагу.

2-й шаг. Выбираем разрешающий элемент из второй и третьей строчки, для удобства вычислений берем . Все элементы второй строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.

Третий столбец в новую таблицу можно переписать без изменений, т.к. в разрешающей стоке в третьем столбце стоит ноль. Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Переходим к следующему шагу.

3-й шаг. Выбираем разрешающий элемент из третьей строчки, т.к. в этой третьей строке только один элемент отличный от нуля, то в качестве разрешающего элемента выбираем этот элемент . Все элементы третьей строки делим на этот разрешающий элемент. Все элементы разрешающего столбца , кроме элемента , обнуляем. Все остальные элементы таблицы вычисляем по правилу прямоугольника.

Первый, третий и контрольный столбцы в новую таблицу можно переписать без изменений, т.к. в разрешающей строке в первом, третьем и контрольном столбцах стоят нули. Записываем полученные данные в таблицу. Осуществляем контроль:

Т.к. элементы контрольного столбца, вычисленные по правилу прямоугольника, равны элементам контрольного столбца, вычисленные суммированием элементов по строке, то полученная таблица составлена верно. Выбранному разрешающему элементу соответствовала переменная , следовательно, переменную записываем в базис.

Т.к. все строки побывали разрешающими и система приведена к единичному базису, то выписываем ответ:

Ответ: .

Задание 1.117. Решить систему линейных уравнений методом Жордана – Гаусса.

1) 2)

3) 4)

5)







Дата добавления: 2015-10-12; просмотров: 972. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия