Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных уравнений методом Гаусса





Метод Гаусса решения систем линейных уравнений заключается в приведении системы уравнений к треугольному виду путем элементарных преобразований уравнений системы, к которым относятся:

- перестановка двух уравнений;

- умножение обеих частей одного из уравнений на ненулевое число;

- прибавление к обеим частям одного из уравнений соответствующих частей другого уравнения.

Элементарные преобразования переводят данную систему в эквивалентную ей.

 

Пример 9.1.. Решить системы линейных уравнений методом Гаусса.

1)

Решение: Решим систему методом Гаусса. Первое уравнение системы оставляем без изменения, для получения второго уравнения умножим первое на 2 и сложим со вторым, а для получения третьего - умножим первое на 6 и сложим с третьим:

Первых два уравнения оставим без изменения, а для получения третьего умножим второе на 7 и сложим с третьим:

Ответ: ; ; .

 

2)

Ответ: решений нет.

 

3)

Ответ: Бесчисленное множество решений: .

 

Решить задачи:

1.111. Решите систему линейных уравнений:

1.112. Решите систему линейных уравнений:

1.113. Решите систему линейных уравнений:

1.114. Решите систему линейных уравнений:

1.115. Решите систему линейных уравнений:

1.116. Решите систему линейных уравнений:

Практическое занятие 10







Дата добавления: 2015-10-12; просмотров: 1942. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия