Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правило Крамера решения систем линейных уравнений третьего порядка.





Для систем трех уравнений с тремя неизвестными

правило Крамера имеет вид:

,

где

 

Пример 4.4.. Дана система трех линейных уравнений с тремя неизвестными. Требуется найти ее решение с помощью формул Крамера.

Решение: Найдем сначала главный определитель системы:

.

Так как главный определитель системы отличен от нуля, то система имеет единственное решение. Для нахождения решения по правилу Крамера найдем вспомогательные определители:

;

;

.

Таким образом, получаем:

; ; .

Ответ: ; ; .

 

Решить задачи:

1.63. Найти решение системы с помощью формул Крамера:

1.64. Найти решение системы с помощью формул Крамера:

1.65. Найти решение системы с помощью формул Крамера:

1.66. Решите систему линейных уравнений:

1.67. Решите систему линейных уравнений:

1.68. Решите систему линейных уравнений:

1.69. Решите систему линейных уравнений:

1.70. Решите систему линейных уравнений:

1.71. Решите систему линейных уравнений:

1.72. Решите систему линейных уравнений:

1.73. Решите систему линейных уравнений:

1.74. Решите систему линейных уравнений: .

1.75. Найти все решения системы

1.76. Найти всерешения системы

1.77. Найти все решения системы

1.78. Определить, при каких значениях а и b система уравнений

1) имеет единственное решение; 2) не имеет решений; 3) имеет бесконечно много решений.

1.79. Доказать, что если система уравнений

совместна, то = 0

1.80. Найти все решения системы

1.81. Найти все решения системы

1.82. Определить, при каком значении а система однородныхуравнений

имеет ненулевое решение.

 







Дата добавления: 2015-10-12; просмотров: 3502. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия