Студопедия — Основные теоретические сведения. 1) -уравнение плоскости, проходящей через точку , перпендикулярно вектору - нормали к плоскости.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные теоретические сведения. 1) -уравнение плоскости, проходящей через точку , перпендикулярно вектору - нормали к плоскости.






1) - уравнение плоскости, проходящей через точку , перпендикулярно вектору - нормали к плоскости.

 

2) -- уравнение плоскости, проходящей через три заданные точки .

 

3) Если две плоскости заданы общими уравнениями:

то по уравнениям двух плоскостей можно определить их нормали .

На основании теоремы об углах, образованных взаимно перпендикулярными сторонами, один из углов между плоскостями можно определить как угол между нормалями по формуле:

.

 

Пример 1. Найти уравнение плоскости, проходящей через три заданные точки ; ; .

Решение: Составим уравнение плоскости :

, ,

,

,

,

.

Ответ: .

Решить задачи:

2.108. Составить уравнение плоскости, которая проходит через точку M1(2; 1; —1) и имеет нормальный вектор n ={1, —2; 3}.

2.109. Составить уравнение плоскости, которая проходит через начало координат и имеет нормальный вектор п = {5; 0; —3}.

2.110. Точка Р (2; —1; —1) служит основанием перпендикуляра, опущенного из начала координат на плоскость. Составить уравне­ние этой плоскости.

2.111. Даны две точки М1(3; —1; 2) и М2(4; —2; —1). Соста­вить уравнение плоскости, проходящей через точку М1 перпендику­лярно к вектору .

2.112. Составить уравнение плоскости, проходящей через точку M1 (3;4; —5) параллельно двум векторам a1 = {3; 1; —1} и a2 = {1; —2; 1}.

2.113 Составить уравнение плоскости, проходящей через точки M 1(2; — 1; 3) и М 2(3; 1; 2) параллельно вектору а = {3; — 1; —4}.

2.114. Составить уравнение плоскости, проходящей через три точки: М 1 (3; — 1; 2), М 2 (4; — 1; — 1) и М 3 (2; 0; 2).

2.115. Определить координаты какого-нибудь нормального вектора каждой из следующих плоскостей. В каждом случае написать общее выражение координат произвольного нормального вектора:

1 ) 2х—у — 2z + 5 = 0; 2) х + 5у — z = 0;

3) 3х —2у —7 = 0; 4) 5у —3z = 0; 5)х + 2 = 0;

6) у — 3 = 0.







Дата добавления: 2015-10-12; просмотров: 1349. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия