Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Угол между двумя прямыми.





Угол между двумя прямыми равен углу между их нормалями или направляющими векторами (см. скалярное произведение).

Если - угловые коэффициенты двух прямых, то:

при - прямые параллельны,

при - прямые перпендикулярны.

 

2.17. Даны уравнения двух сторон прямоугольника 5х + 2у – 7 = 0, 5х + 2у – 36 = 0 и уравнение его диагонали 3х + 7у – 10 = 0. Составить уравнения остальных сторон и второй диагонали этого же прямоугольника.

2.18. Точка А (-4; 5) является вершиной квадрата, диагональ которого лежит на прямой 7х – у + 8 = 0. Составить уравнения сторон и второй диагонали этого квадрата.

2.19. Составить уравнения сторон прямоугольника АВС, если даны одна из его вершин А (1; 3) и уравнения двух медиан х – 2у + 1 = 0 и у – 1 = 0.

2.20. Определить, при каком значении а прямая (а + 2) х + ( – 9) у + 3 - 8а + 5 = 0 1) параллельно оси общие, 3) проходит через начало координат. В каждом случае написать уравнение прямой.

2.21. Определить, при каких значениях а и b две прямые ах – 2у – 1 = 0, 6х – 4у – b = 0 1) имеют одну общую точку, 2) параллельны, 3) совпадают.

2.22. Точка А (2; 5) является вершиной квадрата, одна из сторон которого лежит на прямой х – 2у – 7 = 0. Вычислить площадь этого квадрата.

2.23. Две стороны квадрата лежат на прямых 5х – 12 – 65 = 0, 5х – 12 + 26 = 0. Вычислить его площадь.

2.24. Даны две смежные вершины квадрата А (2; 0) и В (-1; 4). Составить уравнения его сторон.

2.25. Даны вершины треугольника А (-10; -13), В (-2; 3), С (2; 1). Вычислить длину перпендикуляра, опущенного из вершины С.

2.26. Составить уравнения прямых, параллельных прямой 3х – 4у – 10 = 0 и отстоящих от нее на расстояние d = 3. Задание домой: окружность и эллипс.

2.27. Даны две противоположные вершин квадрата А (-1; 3) и С (6; 2). Составить уравнения его сторон.

2.28. Составить уравнения сторон треугольника, если одна из его вершин В (-4; -5) и уравнения двух высот 5х + 3у – 4 = 0 и 3х + 8у + 13 = 0.

2.29. Определить, при каких значениях m и n две прямые mх + 8у + n = 0, 2х + mу – 1 = 0 1) параллельны, 2) совпадают, 3) перпендикулярны.

2.30. Даны уравнения двух сторон прямоугольника 3х – 2у – 5 =, 2х + 3у + 7 = 0 и одна из его вершин А (-2; 1). Вычислить площадь прямоугольника.

2.31. Составить уравнения биссектрис угла образованного двумя пересекающимися прямыми х – 2у – 3 = 0, 2х + 4у + 7 = 0.

2.32. Даны вершины треугольника АВС: А(-3, 1), В(0, 4), С(2, 5). Написать уравнение высоты, проведенной из вершины С к стороне АВ.

2.33. Стороны треугольника АВС заданы уравнениями:

x+y=2 (AB), 2x-y=-2 (AC), x-2y=2 (BC).

Написать уравнение высоты, проведенной из вершины А к стороне ВС.

2.34. Даны вершины треугольника АВС: А(4, -2), В(3, -1), С(2, 6). Написать уравнение средней линии Δ АВС, параллельной стороне АС.

2.35. Стороны треугольника АВС заданы уравнениями:

x+y-3=0 (AB), y-2x=0 (AC), x-y-1=0 (BC).

Написать уравнение прямой, проходящей через вершину А параллельно стороне ВС.

2.36. Даны вершины четырехугольника A(0, 6), B(7,12), C(6, 2), D(2, 2). Найти точку пересечения его диагоналей.

2.37. Даны вершины треугольника АВС: А(0, 4), В(-3, 2), С(2, 6). Написать уравнение медианы, проведенной из точки В.

2.38. Даны вершины треугольника АВС: А(2, 4), В(-2, 5), С(-1, 2). Написать уравнение высоты, проведенной из вершины А к стороне ВС.

2.39. Даны вершины трапеции A(-2,-3), B(-3, 1), C(7, 7), D(3, 0). Написать уравнение средней линии трапеции.

2.40. В треугольнике MNP написать уравнение медианы, проведенной из вершины М, если известно, что М(4, -1), N(2, 3), P(-4, -2).

2.41. Стороны треугольника лежат на прямых: x-y=-2 (AB), x+y=1 (BC), x-2y=1 (AC). Написать уравнение высоты, опущенной из вершины В на сторону АС.







Дата добавления: 2015-10-12; просмотров: 2625. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия