Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гипербола





Основные теоретические сведения. Гипербола - геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная (не равная нулю и меньшая, чем расстояние между фокусами).

каноническое уравнение гиперболы;

;

F1(-c,0), F2(c,0) – фокусы;

- эксцентриситет (ε>1);

- уравнения директрис;

- уравнения асимптот.

 

Решить задачи:

2.79. Составить уравнение гиперболы, фокусы которой располо­жены на оси абсцисс, симметрично относительно начала коорди­нат, зная, кроме того, что:

1) её оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с =10 и ось 2b = 8;

3) расстояние между фокусами 2 с = 6 и эксцентриситет ε = ;

4) ось 2 a = 16 и эксцентриситет ε = ;

5) уравнения асимптот

y = ±

и расстояние между фокусами 2с — 20;

6) расстояние между директрисами равно 22 — и расстояние между фокусами 2с = 26;

7) расстояние между директрисами равно и ось 2b = 6;

8) расстояние между директрисами равно и эксцентриситет ε = ;

9) уравнения асимптот у = ± и расстояние между директрисами равно 12 516.

2.80. Составить уравнение гиперболы, фокусы которой располо­жены на оси ординат, симметрично относительно начала коорди­нат, зная, кроме того, что:

1) её полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2 с =10 и эксцентриситет ε = ;

3) уравнения асимптот у = ± и расстояние между вершинами равно 48;

4) расстояние между директрисами равно и эксцентриси­тет ε = ;

5) уравнения асимптот у = ± и расстояние между директрисами равно .

2.81. Определить полуоси а и b каждой из следующих гипербол:

1) ; 2) 3) х 2— 4 у 2 = 16;

4) х 2у 2 = 1; 5) 4 х 2 — 9 у 2 = 25; 6) 25 х 2 — 16 у 2 = 1;

7) 9 х 2 —16 у 2=1.

2.82.. Дана гипербола 16 х 2 — 9 у 2=144. Найти: 1) полуоси а и b; 2) фокусы;

3) эксцентриситет; 4) уравнения асимптот; 5) урав­нения директрис.

2.83. Дана гипербола 16 х 2 — 9 у 2 = —144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) урав­нения директрис.

9 х + 2 у — 24 = 0.

2.84. Установить, какие линии определяются следующими урав­нениями:

1) y = + , 2) y = —3 ,

3) х = — , 4) у = + .

Изобразить эти линии на чертеже.

2.85. Дана точка М 1(10; — ) на гиперболе .

Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1.

2.86. Убедившись, что точка М 1(— 5; ) лежит на гиперболе ,

определить фокальные радиусы точки M 1.

2.87. Эксцентриситет гиперболы ε = 2, фокальный радиус ей точки М, проведённый из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом дирек­трисы.

2.88. Эксцентриситет гиперболы ε = 3, расстояние от точки М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

2.89. Определить точки гиперболы , расстояние которых до правого фокуса равно 4,5.

2.90. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки M1(6; —1) и М2(—8; 2 ) гиперболы;

2) точка M1(— 5; 3) гиперболы и эксцентриситет ε = ;

3) точка M1(; —1) гиперболы и уравнения асимптот y = ± ;

4) точка M1(—3; ) гиперболы и уравнения директрис y = ± ;

5) уравнения асимптот у = ± и уравнения директрис x = ± ;

2.91. Фокусы гиперболы совпадают с фокусами эллипса

Составить уравнение гиперболы, если её эксцентри­ситет ε = 2.

2.92. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса = 1, а директрисы проходят через фокусы этого эллипса.

до двух её асимптот есть величина постоянная, равная .

и прямыми, проведёнными через любую её точку параллельно асимптотам, есть величина постоянная, равная .

2.93. Установить, что каждое из следующих уравнений опреде­ляет гиперболу, и найти координаты её центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16х2 — 9у9 — 64х — 54у—161 = 0;

2) 9х2 — 16у2 + 90х + 32у — 367 = 0;

3) 16х2 — 9у2 — 64х—18у+199 = 0.

2.94. Установить, какие линии определяются следующими уравнениями:

1) у = — 1+ , 2) у = 7—— ,

3) х = 9 — 2 , 4) х = 5 .

Изобразить эти линии на чертеже.

 

 







Дата добавления: 2015-10-12; просмотров: 4720. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия