Студопедия — Гипербола
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гипербола






Основные теоретические сведения. Гипербола - геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная (не равная нулю и меньшая, чем расстояние между фокусами).

каноническое уравнение гиперболы;

;

F1(-c,0), F2(c,0) – фокусы;

- эксцентриситет (ε>1);

- уравнения директрис;

- уравнения асимптот.

 

Решить задачи:

2.79. Составить уравнение гиперболы, фокусы которой располо­жены на оси абсцисс, симметрично относительно начала коорди­нат, зная, кроме того, что:

1) её оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с =10 и ось 2b = 8;

3) расстояние между фокусами 2 с = 6 и эксцентриситет ε = ;

4) ось 2 a = 16 и эксцентриситет ε = ;

5) уравнения асимптот

y = ±

и расстояние между фокусами 2с — 20;

6) расстояние между директрисами равно 22 — и расстояние между фокусами 2с = 26;

7) расстояние между директрисами равно и ось 2b = 6;

8) расстояние между директрисами равно и эксцентриситет ε = ;

9) уравнения асимптот у = ± и расстояние между директрисами равно 12 516.

2.80. Составить уравнение гиперболы, фокусы которой располо­жены на оси ординат, симметрично относительно начала коорди­нат, зная, кроме того, что:

1) её полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2 с =10 и эксцентриситет ε = ;

3) уравнения асимптот у = ± и расстояние между вершинами равно 48;

4) расстояние между директрисами равно и эксцентриси­тет ε = ;

5) уравнения асимптот у = ± и расстояние между директрисами равно .

2.81. Определить полуоси а и b каждой из следующих гипербол:

1) ; 2) 3) х 2— 4 у 2 = 16;

4) х 2у 2 = 1; 5) 4 х 2 — 9 у 2 = 25; 6) 25 х 2 — 16 у 2 = 1;

7) 9 х 2 —16 у 2=1.

2.82.. Дана гипербола 16 х 2 — 9 у 2=144. Найти: 1) полуоси а и b; 2) фокусы;

3) эксцентриситет; 4) уравнения асимптот; 5) урав­нения директрис.

2.83. Дана гипербола 16 х 2 — 9 у 2 = —144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) урав­нения директрис.

9 х + 2 у — 24 = 0.

2.84. Установить, какие линии определяются следующими урав­нениями:

1) y = + , 2) y = —3 ,

3) х = — , 4) у = + .

Изобразить эти линии на чертеже.

2.85. Дана точка М 1(10; — ) на гиперболе .

Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1.

2.86. Убедившись, что точка М 1(— 5; ) лежит на гиперболе ,

определить фокальные радиусы точки M 1.

2.87. Эксцентриситет гиперболы ε = 2, фокальный радиус ей точки М, проведённый из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом дирек­трисы.

2.88. Эксцентриситет гиперболы ε = 3, расстояние от точки М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

2.89. Определить точки гиперболы , расстояние которых до правого фокуса равно 4,5.

2.90. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки M1(6; —1) и М2(—8; 2 ) гиперболы;

2) точка M1(— 5; 3) гиперболы и эксцентриситет ε = ;

3) точка M1(; —1) гиперболы и уравнения асимптот y = ± ;

4) точка M1(—3; ) гиперболы и уравнения директрис y = ± ;

5) уравнения асимптот у = ± и уравнения директрис x = ± ;

2.91. Фокусы гиперболы совпадают с фокусами эллипса

Составить уравнение гиперболы, если её эксцентри­ситет ε = 2.

2.92. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса = 1, а директрисы проходят через фокусы этого эллипса.

до двух её асимптот есть величина постоянная, равная .

и прямыми, проведёнными через любую её точку параллельно асимптотам, есть величина постоянная, равная .

2.93. Установить, что каждое из следующих уравнений опреде­ляет гиперболу, и найти координаты её центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16х2 — 9у9 — 64х — 54у—161 = 0;

2) 9х2 — 16у2 + 90х + 32у — 367 = 0;

3) 16х2 — 9у2 — 64х—18у+199 = 0.

2.94. Установить, какие линии определяются следующими уравнениями:

1) у = — 1+ , 2) у = 7—— ,

3) х = 9 — 2 , 4) х = 5 .

Изобразить эти линии на чертеже.

 

 







Дата добавления: 2015-10-12; просмотров: 4662. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия