Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численное решение нелинейных уравнений.





• Парасимпатическая система оказывает выраженное влияние на следующие органы (несколько ответов):

– потовые железы

– гладкая мускулатура кожных сосудов

– желудок

– бронхи

– сердце

 


 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

 

 

Кафедра прикладной математики

 

ЧИСЛЕННЫЕ МЕТОДЫ

 

Часть 1

 

 

Методические указания к лабораторным и самостоятельным работам

по курсам «Информатика» и «Вычислительная математика»

 

Казань

 

УДК 621.313: 518.6

ББК 32.81

 

 

А95 Численные методы. Часть 1: Методические указания к лабораторным и самостоятельным работам по курсам «Информатика» и «Вычислительная математика». / Сост.: Ф.Г.Ахмадиев, Ф.Г.Габбасов, Р.Ф.Гиззятов, И.В.Маланичев. – Казань: Изд-во Казанск. гос. архитект.-строит. ун-та, 2013. – 34 с.

 

 

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета.

 

Методические указания состоят из двух частей и предназначены для выполнения лабораторных и самостоятельных работ студентами всех специальностей и направлений подготовки дневного и заочного отделений. В данной части приводятся численные методы решения нелинейных уравнений, систем линейных и нелинейных уравнений.

 

 

Рецензент

Доктор физико-математических наук, профессор КГАСУ

Р.Б.Салимов

 

 

УДК 621.313: 518.6

ББК 32.81

 

 

ã Казанский государственный архитектурно-строительный университет, 2013
   
ã Ахмадиев Ф.Г., Габбасов Ф.Г., Гиззятов Р.Ф., Маланичев И.В.,

 


Численное решение нелинейных уравнений.

Задана непрерывная функция . Требуется определить корни уравнения . Такая задача встречается в различных областях научных исследований, в том числе и при расчетах строительных конструкций, организации и управлении строительным производством.

Нелинейные уравнения можно разделить на два класса - алгебраические и трансцендентные. Алгебраическими уравнениями называются уравнения, содержащие только алгебраические функции. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.), называются трансцендентными.

Методы решения уравнений делятся на прямые и итерационные. Прямые методы позволяют записать корни в виде некоторого конечного соотношения. Если не удается решить уравнения прямыми методами, то для их решения используются итерационные методы, т.е. методы последовательных приближений. Алгоритм нахождения корня уравнения с помощью итерационного метода состоит из двух этапов:

а) отыскания приближенного значения корня или содержащего его отрезка;

б) уточнения значения до некоторой степени точности.

Приближенное значение корня (начальное приближение) может быть найдено различными способами из физических соображений, из решения аналогичной задачи при других исходных данных, с помощью графических методов. Если такие простые оценки исходного приближения произвести не удается, то находят две близко расположенные точки и , в которых непрерывная функция принимает значения разных знаков, т.е. . В этом случае между точками и есть, по крайней мере, одна точка, в которой . В качестве начального приближения первой итерации можно принять середину отрезка , т.е. .

Итерационный процесс состоит в последовательном уточнении . Каждый такой шаг называется итерацией. В результате итераций находятся последовательности приближенных значений корня , , …, . Если эта последовательность с ростом значения приближается к истинному значению корня, то итерационный процесс сходится. Итерационный процесс продолжаем до тех пор, пока значение функции после -й итерации не станет меньшим по модулю некоторого заданного малого числа , т.е. , и (или) по условию близости двух последних приближений: .







Дата добавления: 2015-10-15; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия