Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Ньютона (метод касательных).





Суть метода состоит в том, что на -й итерации в точке строится касательная к кривой и ищется точка пересечения касательной с осью абсцисс (рис. 1.6). Если задан интервал изоляции корня , то за начальное приближение принимается тот конец отрезка, на котором

. (1.1)

Уравнение касательной, проведенной к кривой в точке с координатами и , имеет вид:

(1.2)

Рис. 1.6. Метод касательных.

За следующее приближение корня примем абсциссу точки пересечения касательной с ocью OX. Из (1.2) при , получим

(1.3)

При этом необходимо, чтобы .

Аналогично могут быть найдены и следующие приближения как точки пересечения с осью абсцисс касательных, проведенных в точках , и т.д. Формула для -го приближения имеет вид:

(1.4)

Для завершения итерационного процесса можно использовать условия или .

Объем вычислений в методе Ньютона больше, чем в других методах, поскольку приходится находить значение не только функции , но и ее производной. Однако скорость сходимости здесь значительно выше.

Пример 1.2. Решить уравнение на отрезке методом Ньютона c точностью .

Решение. Определим производные заданной функции : ; . Проверим выполнение условия сходимости на концах заданного интервала: - не выполняется, - выполняется. За начальное приближение корня можно принять .

Находим первое приближение:

.

Аналогично находится второе приближение:

.

Третье приближение:

.

Так как , итерационный процесс заканчивается. Таким образом, приближенным решением данного уравнения является .

На рис. 1.7 приведена программа решения данного уравнения методом Ньютона. В качестве исходных данных вводятся начальное приближение и точность вычисления.

  Исходные данные Результаты
  A B C D
  x0 e x F(x)
    0,001 0,682328 2,84E-10
Function F(x) F = x ^ 3 + x - 1 End Function Function F1(x) F1 = 3 * x ^ 2 + 1 End Function Sub program2() x = Cells(2, 1) e = Cells(2, 2) 1 xk = x - F(x) / F1(x) If Abs(xk - x) >= e Then x = xk: GoTo 1 Cells(2, 3) = xk Cells(2, 4) = F(xk) End Sub
Рис. 1.7. Программа нахождения корней методом Ньютона на языке VBA.

Пример 1.3. Решить уравнение на отрезке методом Ньютона c точностью с помощью программы Excel.

Порядок решения (рис. 1.8).

1) Ввести в ячейки A1:D1 заголовки столбцов.

2) В ячейку A2 – значение начального приближения

3) В ячейку B3 – формулу функции =A2^3+A2-1

4) В ячейку C3 – формулу производной функции =3*A2^2+1

5) В ячейку A3 – формулу первого приближения =A2-B3/C3

6) В ячейку D3 – погрешность =ABS(A3-A2)

7) Выделить ячейки A3:D3 и скопировать формулы в соседние ячейки расположенных ниже строк A4:D4, A5:D5, и т.д. при помощи маркера заполнения. Каждая новая строка содержит результаты очередного приближения.

8) В столбце A найти значение корня, соответствующее заданной точности.

Приближенное решение данного уравнения содержится в ячейке A6 (погрешность в ячейке D6).

 

  A B C D
  x F(x) F'(x) погрешность
  1,00000      
  0,75000 1,00000 4,00000 0,25000
  0,68605 0,17188 2,68750 0,06395
  0,68234 0,00894 2,41198 0,00371
  0,68233 0,00003 2,39676 0,00001
Рис. 1.8. Решение уравнения методом Ньютона с помощью программы Excel.

 







Дата добавления: 2015-10-15; просмотров: 1254. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия