Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса.





Этот метод является одним из наиболее распространенных прямых методов решения систем линейных алгебраических уравнений. В основе метода Гаусса лежит идея последовательного исключения неизвестных.

Рассмотрим систему из трех уравнений с тремя неизвестными:

(2.2)

Система уравнений (2.2) приводится к эквивалентной системе с треугольной матрицей:

(2.3)

Достигается это при помощи цепочки элементарных преобразований, при которых из каждой строки вычитаются некоторые кратные величины расположенных выше строк.

Процесс приведения системы (2.2) к системе (2.3) называется прямым ходом, а нахождение неизвестных , , из системы (2.3) называется обратным ходом.

Прямой ход исключения: Исключаем из уравнений (II) и (III) системы (2.2). Для этого умножаем уравнение (I) на и складываем со вторым, затем умножаем на и складываем с третьим.

В результате получаем следующую систему:

(2.4)

Из полученной системы (2.4) исключаем . Для этого, умножая новое уравнение на и складывая со вторым уравнением, получим уравнение:

(2.5)

Взяв из каждой системы (2.2), (2.4) и (2.5) первые уравнения, получим систему уравнений с треугольной матрицей.

Обратный ход: Из уравнения (III²) находим . Из уравнения (II¢) находим . Из уравнения (I) находим . Коэффициенты , называются ведущими элементами 1-го и 2-го шагов исключения неизвестных. Они должны быть отличны от нуля. Если они равны нулю, то, меняя местами строки, необходимо на их место вывести ненулевые элементы.

Аналогичным путем методом Гаусса решаются системы уравнений с неизвестными.

Пример 2.1. Решить систему уравнений методом Гаусса:

Решение: Удалить члены с из 2-го и 3-го уравнений можно, вычитая из 2-й строки 1-ую, умноженную на , а из 3-й - первую, умноженную на :

2-я строка делится на :

2-я строка умножается на и вычитается из 3-й:

3-я строка делится на :

Процедура обратного хода дает решение:

; ;







Дата добавления: 2015-10-15; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия