Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод прогонки.





Применяется для решения систем уравнений с трехдиагональной (ленточной) матрицей. Такая система уравнений записывается в виде:

, (2.6)

.

Является частным случаем метода Гаусса и состоит из прямого и обратного хода. Прямой ход состоит в исключении элементов матрицы системы (2.6), лежащих ниже главной диагонали. В каждом уравнении останется не более двух неизвестных и формулу обратного хода можно записать в следующем виде:

, (2.7)

Уменьшим в формуле (2.7) индекс на единицу: и подставим в (2.6):

Выразим :

(2.8)

Сравнивая (2.7) и (2.8), получим:

(2.9)

Поскольку , то

, (2.10)

Теперь по формулам (2.9) и (2.10) можно вычислить прогоночные коэффициенты и (). Это прямой ход прогонки. Зная прогоночные коэффициенты, по формулам (2.7), можно вычислить все () (обратный ход прогонки). Поскольку , то и . Далее вычисляем , ,..., , .

Пример 2.3. Решить систему уравнений методом прогонки:

 

Решение. Коэффициенты записываем в виде таблицы 2.1.

 

        Таблица 2.1
         
  -2     -1
  0,1   -1 -5
  -1      

Прямой ход прогонки. По формулам (2.9) и (2.10) определяем прогоночные коэффициенты и ().

, т.к.

Обратный ход прогонки. По формулам (2.7) вычисляем все (). Поскольку , то .

Далее вычисляем:

Вычисляем невязки ()

Пример 2.4. Решить систему уравнений из примера (2.3) методом прогонки с помощью программы Excel.







Дата добавления: 2015-10-15; просмотров: 946. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия