Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Момент сили відносно точки




 

Силовий фактор, під дією якого тіло може здійснювати обертальний рух, називається моментом сили відносно точки (полюса). Це фізичне поняття.

З математичної точки зору момент сили відносно точки О (рис. 4.1) визначається вектором , який дорівнює векторному добутку радіуса-вектора точки А прикладання сили на її вектор :

z
. (4.1)

 
 

 


Рис. 4.1

Отже, враховуючи поняття і визначення векторної алгебри, отримаємо наступні властивості моменту сили відносно точки:

- момент сили відносно точки О є зв’язаним у точці вектором, який напрямлений перпендикулярно до площини S, що проходить через точку О і лінію дії а-а сили , у той бік, звідки обертання тіла під дією сили навколо точки видно проти ходу стрілки годинника;

- в координатній формі момент сили обчислюється так:

(4.2)

де ; ; M0х; M0y; M0z – проекції моменту сили відносно точки О на осі системи координат (рис. 4.1);

- основною одиницею вимірювання моменту сили відносно точки є 1 Н×м;

- за величиною момент сили дорівнює модулю вектора :

,

або , (4.3)

де - плече сили відносно точки О, тобто довжина перпендикуляра, який опущено (рис. 4.1) з точки О на лінію дії а-а сили ;

- відповідно до формули (4.3) момент сили відносно полюса дорівнює нулю, якщо лінія дії сили проходить через даний полюс (при цьому плече сили );

- момент сили відносно точки умовимося вважати додатним (вектор моменту сили на рис. 4.2,а спрямуємо перпендикулярно до горизонтальної площини S вертикально догори) у випадку, якщо сила намагається викликати обертання тіла (або плеча h навколо точки) проти ходу стрілки годинника, і від’ємним – навпаки (рис. 4.2,б).

 

 
 

 

 


а) б)

Рис. 4.2

 







Дата добавления: 2015-10-15; просмотров: 173. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.033 сек.) русская версия | украинская версия