Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклад 1.





Побудувати площину, паралельну даній площині , яка проходить через дану точку .

Розв‘язання.

Нехай точка не лежить в площині . Розв‘язок в цьому випадку звівся би до наступної сукупності побудов:

1) ,

2) через пряму і точку проведемо площину ,

3) в площині , через точку проведемо пряму , паралельну прямій ,

4) через пряму і точку проведемо площину ,

5) в площині через точку проведемо пряму , паралельну прямій ,

 

6) через прямі, які перетинаються та проводимо площину .

Площина - шукана.

Наведені операції не тільки не виконуються, але деякі з них навіть не можуть бути виконаними. Справді, якщо прямі та у початковій площині могли б бути проведені за допомогою лінійки та олівця, то для побудови площин , та на практиці не існує інструментів, за допомогою яких можна було б накреслити безпосередньо в просторі площини і проводити в них побудови. Неможливо, отже, в площинах та провести і прямі та .

З наведеного приклада можна побачити, що в уяві утримуються не тільки задані елементи, але й елементи отримані в процесі побудови, а також розв’язуванні задачі. В цьому випадку уявлюваною являється і сама побудова.

Креслення при розв‘язанні задач на побудову може й не виконуватися. У тих же випадках, коли його застосовують, воно грає допоміжну роль: креслення необхідне для полегшення праці уяви, коли просторова уява погано розвинена або, коли побудови виявляються громіздкими.

У курсі геометрії середньої школи задачі на побудову розв‘язуються переважно в уяві. Такий підхід до розв’язання задачі на побудову становить деякий інтерес. У процесі розв‘язування задач на побудову розвивається просторова уява, це в свою чергу полегшує учням проходження всього останнього навчального матеріалу.

В цей же час необхідно мати на увазі, що оволодіння методами розв‘язування задач на побудову допускає вже достатньо високий рівень розвитку просторової уяви учнів.

Крім того, розв‘язування задач на побудову при традиційній методі закінчуються доведенням існування та єдиності розв‘язку і не доводиться до фактичного відшукання розв’язання побудовою, як це робиться, наприклад, у планіметрії, коли практична ціль задачі на побудову в планіметрії та стереометрії складається з відшукання розв‘язку фактичною побудовою інструментами.

Відмічені недоліки традиційної системи навчання розв‘язуванню задач вдається заповнити при навчанні учнів розв’язанню задач на побудову на проекційному кресленні.







Дата добавления: 2015-10-15; просмотров: 504. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия