З теореми існування випливає, що будь-якій трикутник, зображений на малюнку, можна прийняти (з точності до подібності) за проекцію трикутника будь-якої наперед заданої форми. Тому зображення трикутника на площині довільне. Наприклад, маючи зображення АВС (мал. 14), ми можемо прийняти його за проекцію правильного трикутника або за проекцію прямокутного трикутника тощо. Така невизначеність трикутника пояснюється тим, що величини кутів і сторін трикутника не інваріантні при паралельному проектуванні. Тому за зображенням не можна визначити вид трикутника (таке зображення називається необоротним).
На основі властивостей паралельних проекцій на зображенні трикутника можна побудувати медіану (оскільки медіана ділить сторону навпіл). Можна побудувати точку D на будь-якій стороні трикутника АВС, наприклад на стороні АВ, коли відомо, в якому відношенні точка D ділить сторону в оригіналі. Можна побудувати в площині трикутника АВС точки Е, яка є паралельною проекцією точки , оригіналу. Якщо знаємо відношення і в оригіналі.
Із сказаного випливає, що після того, як виконано побудову зображення трикутника-оригіналу, всі дальші побудови в його площині виконуються на основі властивостей паралельного проектування.