Побудова перерізів геометричних тіл методом слідів
Слідом січної площини називають пряму, утриману при перетині січної площини з якою-небудь площиною, яка задана на зображенні. Цей метод полягає в побудові слідів площини перерізу на гранях даної фігури. Приклад 9. Побудувати лінію перетину (слід) площини з основною площиною , якщо площина задана точками які не належать площині . - проекції точок на площину . Розв‘язання. Коли дві площини мають спільну точку, то вони перетинаються по прямій. Отже треба побудувати такі дві точки та , які визначають єдину пряму , що належить площині (мал. 27). Такими точками будуть точки перетину прямих і з пл. . З цього випливає така побудова: визначаємо точку , в якій пряма перетинає площину проекцій , і точку , в якій пряма перетинає ту саму пл. . Оскільки знайдені точки та одночасно належать і площині , і площині , і ці точки різні, то - шукана пряма, яка і слідом перетину площини і площини . Зауваження. Пряма - не лише слід, а й носій точок перетину нескінченої сукупності прямих, які належать площині і перетинають основну площину . Це положення є одним з головних під час розв‘язання задач на побудову перерізів геометричних тіл методом слідів. Розв‘яжемо кілька задач на побудову перерізів геометричних тіл методом слідів. Приклад 10. На ребрах куба дані точки , і такі, що , і . Побудувати переріз куба площиною .
Розв‘язання: Вияснимо спочатку, чи має розв’язок ця задача. Нехай фігура являється зображенням куба (мал. 28). Це зображення повне. Зрозуміло також, що, маючи на зображенні точки , і - проекції точок , і ми можемо знайти і вторинні проекції точок , і . Для цього достатньо виконати в площині зображення внутрішнє паралельне проектування, наприклад, в направленні паралельному (). Таким чином ми знайдемо точки , і і прийдемо до висновку, що зображення січної площини являється заданим. Тоді задача о знаходженні перетину площини заданої точками , і з поверхністю куба розв'язана. Перейдемо безпосередньо до побудови перерізу (звичайно говорять о побудові перерізу, хоча мова йде о побудові зображення перерізу). Перший етап в загальній схемі розв‘язання задачі на побудову – аналіз – у розглянутому прикладі опускається, а другий і третій етапи – побудова та доведення – проводяться одночасно. По-перше знайдемо слід січної площини – лінію перетину площини з площиною . 1) . Так як , а , то . Так як , а , то . Таким чином точка являється спільною точкою двох площин та . Точка також являється спільною точкою двох площин. Тоді - пряма, по якій перетинаються площини та , тобто 2) - слід січної площини. Далі: 3) , 4) , 5) . Так як , а і , то і . Так як , а , то . Таким чином точка являється спільною точкою площин і . Точка також являється спільною точкою площин. Тому - пряма, по якій перетинаються січна площина з площиною бокової грані куба. 6) , 7) , 8) . Аналогічно знаходимо точку та виконуємо подальші побудови: 9) , 10) , 11) .
Оскільки за побудовою вершини многокутника являються точками, які лежать в січній площині і належать ребрам куба, то многокутник - шуканий переріз. Так як за змістом задачі точки , і не лежать на даній прямій, то задача має єдине рішення. Змінемо умову задачі.
|