Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использованием предельных теорем теории вероятностей. Например, пусть требуется получить последовательность случайных чисел , имеющих нормальное распределение с ма­тематическим ожиданием и средним





Например, пусть требуется получить последовательность случайных чисел , имеющих нормальное распределение с ма­тематическим ожиданием и средним квадратическим отклоне­нием

.

Здесь можно воспользоваться центральной предельной тео­ремой теории вероятностей и построить случайные числа в виде сумм последовательных случайных чисел, имеющих рав­номерное распределение в интервале (0, 1).

Так как исходным материалом для суммирования служат случайные числа, имеющие равномерное распределение в интер­вале (0, 1), то мы можем воспользоваться центральной предель­ной теоремой для одинаково распределенных случайных вели­чин: если независимые случайные величины имеют все одно и то же распределение вероятностей и если каждое имеет математическое ожидание и среднее квадратическое отклонение , то сумма

(1.8)

асимптотически нормальна с математическим ожиданием и средним квадратическим отклонением .

Как показывают расчеты, сумма имеет распределение, близкое к нормальному, уже при сравнительно небольших . Практически для получения последовательности нормально рас­пределенных случайных чисел можно пользоваться значениями , равными 8….12, а в простейших случаях и меньшими значе­ниями , например 4 … 5.

Как известно, математическое ожидание для случайных ве­личин, имеющих равномерное распределение в интервале (0, 1), равно 0,5, а среднее квадратическое отклонение .

Поэтому сумма слагаемых будет иметь математическое ожида­ние и среднее квадратическое отклонение .

Для обеспечения достаточно точного совпадения закона рас­пределения суммы (1.8) с нормальным, очевидно, требуется увеличивать число слагаемых . Однако это не единственно воз­можный путь.

Как показано в работе [3], для улучшения асимптотической нормальности случайных чисел можно воспользоваться специ­альными преобразованиями.

Так, если имеется сумма

(1.9)

случайных величин равномерно распределенных в интервале , то величина

(1.10)

будет иметь распределение, достаточно близкое к нормальному, при существенно меньших, чем это требуется для (1.9). По данным [3] при = 5 закон распределения случайной вели­чины оказывается заведомо близким к нормальному.

Еще более точным в этом смысле является преобразование

, (1.11)

для которого, по-видимому, достаточно иметь = 2.

Практическое использование преобразований вида (1.10) и (1.11) может оказаться весьма полезным при решении многих задач.

Окончательное мнение о целесообразности выбора опреде­ленного значения и использования того или другого преобра­зования может сложиться лишь в результате оценки затрат ра­бочего времени ЭВМ при решении данного класса задач.







Дата добавления: 2015-10-15; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия