Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные элементы методики





Для количественного анализа инвестиций в производство необходим достаточно большой объем информации. Часть ее обеспечивается технико-экономическими расчетами и накопленной производственной статистикой. Однако многие данные, особенно при разработке крупных проектов, можно получить лишь экспертным путем. Существование значительных диапазонов для реально возможных будущих состояний объекта прогноза требует разработки не точечных, а интервальных экспертных прогнозов и наделения последних субъективными вероятностями их реализации (осуществления). Чем больше эта вероятность, тем шире интервал прогноза при всех прочих равных условиях. Кратко методика сводится к "извлечению" из эксперта некоторых суждений и их преобразованию в более узкие интервалы прогноза, чем это первоначально было задано экспертом для некоторых крайних ситуаций.

Определение интервала для прогнозируемой величины и его увязывание с вероятностью реализации можно во многих случаях сделать вполне выполнимой задачей, если воспользоваться предлагаемой ниже методикой[41]. Данная методика отличается прагматичностью: она проста в реализации и не требует от эксперта глубоких знаний в области теории вероятностей и математической статистики. Достаточно быть знакомым с основными параметрами статистических распределений (средней, модой, дисперсией). Однако за простоту, как правило, надо платить. Плата заключается в нестрогом применении положений математической статистики. Последнее, впрочем, оправдывается и тем, что сами исходные данные обычно не являются результатами статистических наблюдений.

Согласно данной методике в задачу эксперта входят:

• определение реально возможного диапазона значений прогнозируемой величины;

• выбор вида распределения вероятностей реализации в пределах этого диапазона;

• выбор уровня надежности прогноза (вероятности его реализации).

Кроме того, при прогнозировании сумм или произведения показателей эксперт должен вынести суждение о наличии (или отсутствии) значительной зависимости слагаемых или сомножителей (да, нет). Это суждение выносится исходя из содержания рассматриваемых показателей, накопленного опыта или, в лучшем случае, основывается на результатах предварительного регрессионного или корреляционного анализа статистических данных.

Кратко охарактеризуем перечисленные этапы.

Реально возможный диапазон (РВД) — полный интервал реально возможных значений, в котором с практически 100%-й вероятностью (наверняка) окажется, по мнению эксперта, соответствующая характеристика. Эксперт для этого определяет экстремальные значения показателя (нижнюю и верхнюю границу) исходя из крайних сценариев развития исследуемого объекта. Пример: ожидается, что при наихудшей конъюнктуре для продавца цена продукции не может быть меньше А, при наилучшей — не более Б, или темп роста производства в некотором временном интервале не опустится ниже а %и не превысит b %.

Ожидаемый вид распределения вероятностей для прогнозируемой величины в пределах установленного РВД. Эксперт должен вынести самое общее суждение о виде распределения, выбрав один из четырех вариантов. Предлагаются следующие виды распределений: а) нормальное; б) треугольное; в) трапециевидное; г) равномерное. Для упрощения полагаем, что распределения б) и в) являются симметричными. (Можно было бы рассмотреть и несимметричные варианты этих распределений, однако вряд ли эксперт сможет более или менее удовлетворительно определить необходимые для этого параметры.) Заметим, что распределения б) и в) не встречаются в "классической" статистике.

Рис. 8.1

(а) Нормальное распределение N. Ожидается, что варианты значений прогнозируемого параметра сосредоточены около среднего значения. Значения параметра, существенно отличающиеся от среднего, т. е. находящиеся в "хвостах" распределения, имеют малую вероятность осуществления.

(б) Треугольное распределение Т. Этот вид распределения можно рассматривать как некоторый суррогат нормального в тех случаях, когда известно только, что распределение симметрично и имеет одну моду, причем следует ожидать, что вероятность реализации более или менее равномерно растет по мере приближения к моде.

(в) Трапециевидное распределение Тр. Предполагается, что в пределах РВД существует интервал значений с наибольшей вероятностью реализации (НВР). Например, предполагается, что в диапазоне от 10 до 30% наиболее вероятны процентные ставки в пределах 15 - 25%.

(г) Равномерное распределение P. По мнению эксперта, все варианты прогнозируемого показателя имеют одинаковую вероятность реализации, что равносильно отсутствию каких-либо дополнительных экспертных суждений о характере явления.

По-видимому, наибольшую информацию эксперт должен иметь для того, чтобы утверждать, что распределение близко к нормальному[42], и, наоборот, при полном отсутствии такой информации логично остановиться на равномерном распределении. Распределения Т и Тр занимают промежуточные места. Графическая иллюстрация перечисленных распределений приведена на рис. 8.1, на котором буквенные символы обозначают:

a, b — границы РВД;

М — модальное значение переменной;

M 1, M 2 — границы НВР.

При использовании указанных распределений, кроме нормального, полагаем, что площадь под кривой распределения равна 1, или 100%. С небольшой натяжкой сказанное можно отнести и к нормальному распределению.

Третьим необходимым элементом методики является доверительная вероятность (ДВ), которая характеризует уровень вероятности реализации прогноза. Например, допустим, что интервальная оценка цены продукции в рамках прогноза считается надежной, если ДВ принята на уровне 0,9. Таким образом, в 9 случаях (шансах) из 10 (иными словами, с 90%-й вероятностью) можно утверждать, что прогноз окажется оправданным. Чем больше величина ДВ, тем ближе интервальный прогноз к РВД.







Дата добавления: 2015-10-15; просмотров: 348. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия