Основные элементы методики
Для количественного анализа инвестиций в производство необходим достаточно большой объем информации. Часть ее обеспечивается технико-экономическими расчетами и накопленной производственной статистикой. Однако многие данные, особенно при разработке крупных проектов, можно получить лишь экспертным путем. Существование значительных диапазонов для реально возможных будущих состояний объекта прогноза требует разработки не точечных, а интервальных экспертных прогнозов и наделения последних субъективными вероятностями их реализации (осуществления). Чем больше эта вероятность, тем шире интервал прогноза при всех прочих равных условиях. Кратко методика сводится к "извлечению" из эксперта некоторых суждений и их преобразованию в более узкие интервалы прогноза, чем это первоначально было задано экспертом для некоторых крайних ситуаций. Определение интервала для прогнозируемой величины и его увязывание с вероятностью реализации можно во многих случаях сделать вполне выполнимой задачей, если воспользоваться предлагаемой ниже методикой[41]. Данная методика отличается прагматичностью: она проста в реализации и не требует от эксперта глубоких знаний в области теории вероятностей и математической статистики. Достаточно быть знакомым с основными параметрами статистических распределений (средней, модой, дисперсией). Однако за простоту, как правило, надо платить. Плата заключается в нестрогом применении положений математической статистики. Последнее, впрочем, оправдывается и тем, что сами исходные данные обычно не являются результатами статистических наблюдений. Согласно данной методике в задачу эксперта входят: • определение реально возможного диапазона значений прогнозируемой величины; • выбор вида распределения вероятностей реализации в пределах этого диапазона; • выбор уровня надежности прогноза (вероятности его реализации). Кроме того, при прогнозировании сумм или произведения показателей эксперт должен вынести суждение о наличии (или отсутствии) значительной зависимости слагаемых или сомножителей (да, нет). Это суждение выносится исходя из содержания рассматриваемых показателей, накопленного опыта или, в лучшем случае, основывается на результатах предварительного регрессионного или корреляционного анализа статистических данных. Кратко охарактеризуем перечисленные этапы. Реально возможный диапазон (РВД) — полный интервал реально возможных значений, в котором с практически 100%-й вероятностью (наверняка) окажется, по мнению эксперта, соответствующая характеристика. Эксперт для этого определяет экстремальные значения показателя (нижнюю и верхнюю границу) исходя из крайних сценариев развития исследуемого объекта. Пример: ожидается, что при наихудшей конъюнктуре для продавца цена продукции не может быть меньше А, при наилучшей — не более Б, или темп роста производства в некотором временном интервале не опустится ниже а %и не превысит b %. Ожидаемый вид распределения вероятностей для прогнозируемой величины в пределах установленного РВД. Эксперт должен вынести самое общее суждение о виде распределения, выбрав один из четырех вариантов. Предлагаются следующие виды распределений: а) нормальное; б) треугольное; в) трапециевидное; г) равномерное. Для упрощения полагаем, что распределения б) и в) являются симметричными. (Можно было бы рассмотреть и несимметричные варианты этих распределений, однако вряд ли эксперт сможет более или менее удовлетворительно определить необходимые для этого параметры.) Заметим, что распределения б) и в) не встречаются в "классической" статистике. Рис. 8.1 (а) Нормальное распределение N. Ожидается, что варианты значений прогнозируемого параметра сосредоточены около среднего значения. Значения параметра, существенно отличающиеся от среднего, т. е. находящиеся в "хвостах" распределения, имеют малую вероятность осуществления. (б) Треугольное распределение Т. Этот вид распределения можно рассматривать как некоторый суррогат нормального в тех случаях, когда известно только, что распределение симметрично и имеет одну моду, причем следует ожидать, что вероятность реализации более или менее равномерно растет по мере приближения к моде. (в) Трапециевидное распределение Тр. Предполагается, что в пределах РВД существует интервал значений с наибольшей вероятностью реализации (НВР). Например, предполагается, что в диапазоне от 10 до 30% наиболее вероятны процентные ставки в пределах 15 - 25%. (г) Равномерное распределение P. По мнению эксперта, все варианты прогнозируемого показателя имеют одинаковую вероятность реализации, что равносильно отсутствию каких-либо дополнительных экспертных суждений о характере явления. По-видимому, наибольшую информацию эксперт должен иметь для того, чтобы утверждать, что распределение близко к нормальному[42], и, наоборот, при полном отсутствии такой информации логично остановиться на равномерном распределении. Распределения Т и Тр занимают промежуточные места. Графическая иллюстрация перечисленных распределений приведена на рис. 8.1, на котором буквенные символы обозначают: a, b — границы РВД; М — модальное значение переменной; M 1, M 2 — границы НВР. При использовании указанных распределений, кроме нормального, полагаем, что площадь под кривой распределения равна 1, или 100%. С небольшой натяжкой сказанное можно отнести и к нормальному распределению. Третьим необходимым элементом методики является доверительная вероятность (ДВ), которая характеризует уровень вероятности реализации прогноза. Например, допустим, что интервальная оценка цены продукции в рамках прогноза считается надежной, если ДВ принята на уровне 0,9. Таким образом, в 9 случаях (шансах) из 10 (иными словами, с 90%-й вероятностью) можно утверждать, что прогноз окажется оправданным. Чем больше величина ДВ, тем ближе интервальный прогноз к РВД.
|