Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы реперного формализма в декартовой системе координат.





Два вектора и заданы своими декартовыми координатами. Разложим их по ортам : , .

Найдем векторное произведение данных векторов:

(воспользуемся таблицей векторного умножения ортов и сгруппируем) = = .

Выражения в скобках получаются при вычислении определителей 2-го порядка, поэтому можно записать:

–разложение по первой строке определителя 3-го порядка:

– (4)

формула для нахождения векторного произведения векторов, заданных своими декартовыми координатами.

Можем записать, что координаты вектора векторного произведения равны:

.

Примеры.

 

Основы реперного формализма в декартовой системе координат.

Здесь рассмотрим понятия локального репера, векторного элемента длины и теорему Пифагора в декартовых координатах.

Рассмотрим произвольную точку , положение которой в пространстве определяется его радиус-вектором:

. (1.1)

Рис.1

Если ввести близкую к точку ’ с координатами , то разность радиус-векторов положения этих двух точек определяет бесконечно малый вектор, называемый векторным элементом длины.

Из (1.1) следует, что

. (1.2)

Это соотношение можно объяснить как разложение вектора по декартовому базису из единичных векторов .

Рис.2

С другой стороны, (1.2) можно получить дифференцированием (1.1), считая постоянными величинами. Таким образом, в каждой точке пространства имеется тройка взаимно-перпендикулярных единичных векторов с общим началом, причем они при переходе из одной точки в другую сохраняют свою длину и направление. Множество всех векторов () называется локальным декартовым репером.

Из (1.1) следует, что

. (1.3)

Квадрат расстояния между близкими точками определяется теоремой Пифагора

. (1.4)

Это соотношение можно получить из (1.2), используя таблицу скалярных произведений декартова репера:

= = = 1

(1.5)

= = = 0

. (1.6)

 

Следовательно, таблица скалярных произведений (1.5) эквивалентна теореме Пифагора (1.4), и позволяет определить важный геометрический объект, называемый метрическим тензором. Введем индексные обозначения:

;

(1.7)

.

Кроме того, определим символ Кронекера:

, где (1.8)

Тогда таблица скалярных произведений декартова репера (1.5) записывается в форме:

(1.9)

Таким образом, метрическим тензором называется тензор второго ранга, компоненты которого в декартовой системе координат совпадают с символом Кронекера.







Дата добавления: 2015-10-12; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия