Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы реперного формализма в декартовой системе координат.





Два вектора и заданы своими декартовыми координатами. Разложим их по ортам : , .

Найдем векторное произведение данных векторов:

(воспользуемся таблицей векторного умножения ортов и сгруппируем) = = .

Выражения в скобках получаются при вычислении определителей 2-го порядка, поэтому можно записать:

–разложение по первой строке определителя 3-го порядка:

– (4)

формула для нахождения векторного произведения векторов, заданных своими декартовыми координатами.

Можем записать, что координаты вектора векторного произведения равны:

.

Примеры.

 

Основы реперного формализма в декартовой системе координат.

Здесь рассмотрим понятия локального репера, векторного элемента длины и теорему Пифагора в декартовых координатах.

Рассмотрим произвольную точку , положение которой в пространстве определяется его радиус-вектором:

. (1.1)

Рис.1

Если ввести близкую к точку ’ с координатами , то разность радиус-векторов положения этих двух точек определяет бесконечно малый вектор, называемый векторным элементом длины.

Из (1.1) следует, что

. (1.2)

Это соотношение можно объяснить как разложение вектора по декартовому базису из единичных векторов .

Рис.2

С другой стороны, (1.2) можно получить дифференцированием (1.1), считая постоянными величинами. Таким образом, в каждой точке пространства имеется тройка взаимно-перпендикулярных единичных векторов с общим началом, причем они при переходе из одной точки в другую сохраняют свою длину и направление. Множество всех векторов () называется локальным декартовым репером.

Из (1.1) следует, что

. (1.3)

Квадрат расстояния между близкими точками определяется теоремой Пифагора

. (1.4)

Это соотношение можно получить из (1.2), используя таблицу скалярных произведений декартова репера:

= = = 1

(1.5)

= = = 0

. (1.6)

 

Следовательно, таблица скалярных произведений (1.5) эквивалентна теореме Пифагора (1.4), и позволяет определить важный геометрический объект, называемый метрическим тензором. Введем индексные обозначения:

;

(1.7)

.

Кроме того, определим символ Кронекера:

, где (1.8)

Тогда таблица скалярных произведений декартова репера (1.5) записывается в форме:

(1.9)

Таким образом, метрическим тензором называется тензор второго ранга, компоненты которого в декартовой системе координат совпадают с символом Кронекера.







Дата добавления: 2015-10-12; просмотров: 570. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия