Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Био-Савара. Распределения объемных плотностей тока, типа полученных выше формул, позволяют сводить к квадратурам задачу об определении компонент вектора напряженности





Распределения объемных плотностей тока, типа полученных выше формул, позволяют сводить к квадратурам задачу об определении компонент вектора напряженности магнитного поля на основе закона Био-Савара:

 

(10.1)

 

Найти напряженность магнитного поля в вакууме, создаваемое током, силы I, текущим по прямому тонкому проводу бесконечной длины.

Решение:Ось z цилиндрической системы координат совместим с проводом.

 

Рис.12

 

Используя нормировочное условие

 

(10.2)

 

и очевидное соотношение

 

(10.3)

 

найдем, что

 

(10.4)

 

Рассмотрим точку Р с координатами . Вычислим , создаваемое участком .

Предельный переход даст поле бесконечного провода, которое обладает осевой симметрией относительно вращений (вокруг оси z) и трансляционной симметрией для сдвигов по оси z.

 

Рис.13

 

Радиус-вектор положения элемента объема в интеграле (10.1) пробегает все трехмерное пространство:

 

(10.5)

 

Точка наблюдения Р определяется радиус-вектором:

 

(10.6)

 

Отсюда следует, что

 

(10.7)

(10.8)

 

Таблица векторных произведений базисных ортов цилиндрической системы координат имеет вид:

 

(10.9)

 

Следовательно,

 

(10.10)

 

Подставим все полученные результаты в формулу (10.1) и получаем

 

(*)

 

Учтем, что

 

 

Окончательно, имеем

 

(10.11)

(10.12)

 

Задача решена.

 

 







Дата добавления: 2015-10-12; просмотров: 491. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия