Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение напряженности и потенциала электростатического поля для сферически симметричного распределения зарядов.





Пусть имеется замкнутая поверхность почти произвольной формы, но такая, что лучи, проводимые из некоторой точки, находящейся внутри, протыкают ее только один раз. Обозначим через Q количество заряда, находящегося внутри S.

Рис.6

 

Тогда электростатическая теорема Гаусса выражается интегральным соотношением:

, (6.1)

- напряженность электростатического поля.

Пусть распределение объемной плотности заряда сферически-симметрично, т.е. в сферических координатах

. (6.2)

Потенциал электростатического поля определяется из уравнения Пуассона:

. (6.3)

Из-за сферической симметричности правой части такую же симметрию должна иметь левая часть уравнения и в лапласиане члены с угловыми переменными должны исчезнуть. Тогда решение (6.3) может быть только сферически-симметричным:

. (6.4)

В определение напряженности электростатического поля подставим формулу для градиента в сферической системе координат

, (6.5)

и получим вектор напряженности сферически-симметричного электростатического поля:

. (6.6)

Решим следующую задачу. Имеется шар радиуса, заряженный с объемной плотностью, имеющей сферическую симметрию

- const. (6.7)

Найти напряженность и потенциал электростатического поля вне и внутри шара.

Решение. А) Найдем внутри шара радиуса R. Через произвольную точку P, находящуюся внутри сферы радиуса R проведем сферу радиуса r<R.

Рис.7

Теорема Гаусса для гласит, что

. (6.8)

В правой части стоит – количество заряда, находящееся внутри сферы :

. (*)

С другой стороны, вычисляя скалярное произведение в подынтегральном выражении (6.8) согласно (6.6) и (4.11) имеем

. (**)

Подставляя промежуточные результаты (*,**) в (6.7) получаем значение компоненты вектора напряженности внутри сферы :

. (6.9)

Б) Найдем вне сферы . В правой части теоремы Гаусса должен быть полный заряд шара:

. (*)

Через точку , находящуюся вне сферы , проведем сферу радиуса r>R. По теореме Гаусса

. (**)

Учитывая (*), отсюда получаем, что

. (6.10)

В) Найдем потенциалы внутри и вне . Согласно (6.6) и (6.10) имеем

. (6.11)

Решение этого уравнения получается методом разделения переменных:

. (6.12)

Постоянная интегрирования B оказывается равной нулю, если положить, что

. (6.13)

Для потенциала внутри вместо (6.11) имеет место дифференциальное уравнение:

. (6.14)

Решение этого уравнения имеет вид:

. (6.15)

Постоянную интегрирования D найдем из условия «сшивания» внешнего и внутреннего решений на границе :

. (6.16)

Отсюда следует, что

. (6.17)

Решение задачи имеет вид:

;

;

;

(6.18)

 







Дата добавления: 2015-10-12; просмотров: 618. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия