Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метрический тензор и коэффициенты Ламе.





Квадрат расстояния между близкими точками определяется теоремой Пифагора. Для формулировки этой теоремы в криволинейной системе координат заметим, что компоненты введенного в § 1 метрического тензора здесь определяются таблицей скалярных произведений натурального репера

. (3.1)

Используя формулы (2.10) и (2.12) легко установить, что в сферической и цилиндрической системах координат имеем следующую таблицу:

, ,

, , (3.2)

, ,

 

. (3.3)

Ниже r – цилиндрический радиус:

, , (3.4)

, ,

. (3.5)

Уравнение (1.6), которое вместе с соотношением (1.4) определяет формулировку теоремы Пифагора в декартовых координатах, записано в векторной форме, и следовательно, остается справедливым в любой системе координат. Подставляя (2.7) и (3.1) в (1.6), получаем формулировку теоремы Пифагора в произвольной криволинейной системе координат:

. (3.6)

Соответственно, в сферической и цилиндрической системах координат имеем

, (3.7)

, (3.8)

Скалярное произведение двух векторов равно произведению их модулей на косинус угла между ними. Отсюда следует, что благодаря касательности векторов натурального репера к координатным линиям, последние будут взаимно-ортогональны в каждой точке, если недиагональные компоненты метрического тензора равны нулю

, . (3.9)

Такие системы координат называются криволинейными ортогональными, в дальнейшем всегда будем пользоваться ими. Из формул (3.2) и (3.4) видно, что координатные линии сферической и цилиндрической систем координат взаимно-ортогональны во всех точках пространства. В криволинейной ортогональной системе координат теорема Пифагора согласно (3.9) принимает вид:

. (3.10)

Введем величины

, , , (3.11)

которые называются коэффициентами Ламе. Если определить элементарные длины

, , , (3.12)

то (3.10) принимает тот же вид, что теорема Пифагора в декартовой системе координат:

. (3.13)

Из определения (3.11) следует, что коэффициенты Ламе совпадают с «длинами» соответствующих векторов натурального репера:

, , . (3.14)

В формулы преобразования координат входят нелинейным образом. Поэтому они должны быть безразмерными величинами. Тогда из (3.12) видно, что коэффициенты Ламе имеют размерность длины.

Если сделать нормировку векторов натурального репера, то получаются векторы ортонормированного репера, присоединенного к криволинейной ортогональной системе координат:

, , . (3.15)

Для сферических и цилиндрических координат на основании (2.10) и (2.12) коэффициенты Ламе и формулы перехода к ортонормированному реперу имеют вид:

, , ,

, (3.16)

,

, (3.17)

, , , (3.18)

,

, (3.19)

.







Дата добавления: 2015-10-12; просмотров: 1645. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия