Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение дельта-функции Дирака и ступенчатой функции для описания распределения объемной плотности тока





Объемные плотности заряда и тока для случаев типа распределения зарядов по поверхности, линии и других ограниченных областей записываются в виде скалярной и векторной функций, определенных во всем трехмерном пространстве. Свойства дельта-функции и ступенчатой функции и их применение даны в задачнике [1]. Желательно прорешать задачи 80,81,88 и проработать приложения о свойствах указанных обобщенных функций в [1].

Разберем подробно решения двух задач из [1].

149 г): В плоскости ху по бесконечно тонкому кольцу радиуса R течет линейный ток J, образуя правовинтовую систему с осью z, которая проходит через центр кольца. Используя дельта-функцию Дирака определить распределение объемной плотности тока .

Рис.10

 

Решение: Некоторое значение азимутального угла определяет плоскость . Согласно определению понятия силы тока имеем нормировочное условие для искомой объемной плотности тока:

 

(9.1)

 

Плотность тока отлична от нуля при следующих значениях цилиндрических координат:

 

(9.2)

 

Поэтому вектор объемной плотности тока нужно искать в виде:

 

(9.3)

 

А - нормировочный множитель.

В силу того, что

 

(9.4)

 

получаем

 

(9.5)

 

Задача решена.

149 д): Найти , если равномерно заряженная с поверхностной плотностью поверхность кругового конуса с вершиной в начале координат вращается вокруг своего диаметра с угловой скоростью , направленной вдоль оси z.

Решение: Известно, что

 

(9.6)

(9.7)

 

Поэтому сначала найдем распределение объемной плотности заряда . Очевидно, что в сферической системе координат

 

(9.8)

 

Следовательно,

 

(9.9)

 

Нормировочный множитель А найдем из условия:

 

(9.10)

 

Вычислив объемный интеграл в этой формуле по всему трехмерному пространству получим, что

 

(9.11)

 

Найдем результат векторного произведения (9.7) в сферической системе координат.

 

Рис.11

 

Пусть

 

(*)

 

тогда

 

(**)

 

Легко видеть, что

 

(9.12)

(9.13)

 

В силу взаимной ортогональности базисных ортов сферической системы координат для них имеет место следующая таблица векторных произведений:

 

(9.14)

 

Следовательно,

 

(9.15)

(9.16)

 

Задача решена.

 







Дата добавления: 2015-10-12; просмотров: 1209. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия