Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение дельта-функции Дирака и ступенчатой функции для описания распределения объемной плотности тока





Объемные плотности заряда и тока для случаев типа распределения зарядов по поверхности, линии и других ограниченных областей записываются в виде скалярной и векторной функций, определенных во всем трехмерном пространстве. Свойства дельта-функции и ступенчатой функции и их применение даны в задачнике [1]. Желательно прорешать задачи 80,81,88 и проработать приложения о свойствах указанных обобщенных функций в [1].

Разберем подробно решения двух задач из [1].

149 г): В плоскости ху по бесконечно тонкому кольцу радиуса R течет линейный ток J, образуя правовинтовую систему с осью z, которая проходит через центр кольца. Используя дельта-функцию Дирака определить распределение объемной плотности тока .

Рис.10

 

Решение: Некоторое значение азимутального угла определяет плоскость . Согласно определению понятия силы тока имеем нормировочное условие для искомой объемной плотности тока:

 

(9.1)

 

Плотность тока отлична от нуля при следующих значениях цилиндрических координат:

 

(9.2)

 

Поэтому вектор объемной плотности тока нужно искать в виде:

 

(9.3)

 

А - нормировочный множитель.

В силу того, что

 

(9.4)

 

получаем

 

(9.5)

 

Задача решена.

149 д): Найти , если равномерно заряженная с поверхностной плотностью поверхность кругового конуса с вершиной в начале координат вращается вокруг своего диаметра с угловой скоростью , направленной вдоль оси z.

Решение: Известно, что

 

(9.6)

(9.7)

 

Поэтому сначала найдем распределение объемной плотности заряда . Очевидно, что в сферической системе координат

 

(9.8)

 

Следовательно,

 

(9.9)

 

Нормировочный множитель А найдем из условия:

 

(9.10)

 

Вычислив объемный интеграл в этой формуле по всему трехмерному пространству получим, что

 

(9.11)

 

Найдем результат векторного произведения (9.7) в сферической системе координат.

 

Рис.11

 

Пусть

 

(*)

 

тогда

 

(**)

 

Легко видеть, что

 

(9.12)

(9.13)

 

В силу взаимной ортогональности базисных ортов сферической системы координат для них имеет место следующая таблица векторных произведений:

 

(9.14)

 

Следовательно,

 

(9.15)

(9.16)

 

Задача решена.

 







Дата добавления: 2015-10-12; просмотров: 1209. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия