Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цилиндрически-симметрическое распределение зарядов.





Решим задачу об определении и для бесконечного цилиндра радиуса R, заряженного с объемной плотностью

 

(7.1)

 

Ось цилиндра совмещена с осью z, r - цилиндрическая радиальная координата. Те же рассуждения о симметрии, которые были сделаны в начале §6, приводят к тому, что цилиндрически-симметричное поле имеет вид:

 

(7.2)

 

- орт, касательный к цилиндрической радиальной координатной линии.

Для того, чтобы иметь дело с конечным значением полного заряда в теореме Гаусса, рассмотрим область трехмерного пространства, ограниченную плоскостями z = 0 и z = H.

Рис.8

 

а) Найдем - внутри цилиндра радиуса R. Через точку Р во внутренней области заряженного цилиндра проведем цилиндрическую поверхность радиуса r < R. Для полученного цилиндра радиуса r и высоты H можно применить теорему Гаусса

 

(7.3)

 

Используя второе основное свойство поверхностного интеграла (5.5), получаем, что интеграл по замкнутой поверхности в (7.3) разлагается на сумму трех интегралов: по первому и второму основаниям и по боковой поверхности вырезанного нами цилиндра

 

(*)

 

Нормали к основаниям направлены параллельно оси z, а нормаль к боковой поверхности параллельна . Поэтому из формулы для векторного элемента поверхности в цилиндрической системе координат (4.12) следует, что

 

(7.4)

 

Из (7.2) и (7.4) видно, что

 

(*)

 

Легко видеть, что

 

(**)

 

Подставляя последние два результата в теорему Гаусса (7.3) получаем

 

(7.5)

 

б) Найдем вне цилиндра аналогичным способом. Используем теорему Гаусса для цилиндра высоты Н и радиуса r < R. Вместо (**) имеем

 

(***)

 

окончательно

 

(7.6)

 

в) Найдем потенциал внутри и вне заряженного цилиндра. Во внутренней области из (7.2) и (7.5) получаем

 

(7.7)

 

Для определения постоянной интегрирования А положим

 

 

Отсюда следует, что А обращается в нуль. Для внешней области имеем

 

(7.8)

Постоянная интегрирования В получается из условия «сшивания» внешнего и внутреннего решений:

 

(7.9)

 

Окончательно имеем, что

 

(7.10)

 







Дата добавления: 2015-10-12; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия