Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Натуральный репер, присоединенный к криволинейной системе координат.





Сферическая система координат определяется формулами:

;

(2.1)

На примере сферических координат введем понятие координатных линий, которое вводится тем же способом для всех других систем координат.

Рассмотрим произвольную точку , положение которой определяется значениями . Координатная линия получается движением точки при постоянных . Линии и получаются изменениями и при фиксированных значениях остальных координат.

Рис.3

Формулы перехода к общим криволинейным координатам имеют аналогичный вид:

(2.2)

Подставляя эти формулы в (1.1), видим, что в общем случае радиус-вектор точки является сложной функцией от криволинейных координат:

, , ) = . (2.3)

От точки сместимся вдоль координатной линии , придавая только этой координате приращение . Получаемый при этом вектор направлен вдоль координатной линии .

Рис.4

Следовательно, существует такой конечный вектор , касательный к координатной линии в точке , что имеет место уравнение:

. (2.5)

Аналогичные соотношения получаются и вдоль координатных линий:

; (2.6)

Следовательно, векторный элемент длины в криволинейной системе координат определяется формулой:

. (2.7)

Из (2.5) и (2.6) следует, что

. (2.8)

Таким образом, имеется тройка векторов с общим началом и касательных в каждой точке пространства координатным линиям . Векторные поля образуют поле натурального репера, присоединенного к криволинейной системе координат .

Если применить правило дифференцирования сложной функции от многих переменных к (2.8), учитывая (2.3), то получаются формулы перехода от декартова репера к натуральному реперу:

;

;

(2.9)

.

Эти формулы для сферических координат имеют вид:

;

; (2.10)

.

А для цилиндрической системы

, , . (2.11)

имеем:

;

(2.12)

.







Дата добавления: 2015-10-12; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия