Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструирование основных типов векторных интегралов.





Криволинейные интегралы скалярного и векторного характера строятся при использовании векторного элемента длины (1.2), который в криволинейной ортогональной системе согласно (2.7) имеют вид:

. (4.1)

В сферических и цилиндрических координатах имеем

; (4.2)

. (4.3)

Криволинейный интеграл скалярного типа получается, если в качестве подынтегрального выражения взять скалярное умножение вектор-функции на векторный элемент длины:

. (4.4)

А если вместо скалярного умножения составить векторное произведение, то получится интеграл векторного типа:

. (4.5)

Поверхностные интегралы двух типов конструируются аналогичным образом. Скалярный интеграл получится по аналогии с (4.4), где роль играет векторный элемент поверхности , который в декартовой системе координат имеет вид:

; (4.6)

. (4.7)

Если здесь скалярное произведение заменить векторным, то получится векторный интеграл. Для вычисления таких интегралов нам понадобятся формулы для векторных элементов длины и поверхности и элемента объема в криволинейных ортогональных системах координат. Перепишем (4.1), вводя туда элементарные длины (3.12):

. (4.8)

Сравним это выражение с (1.2) и видим, что (4.8) получается из (1.2) заменой

;

(4.9)

.

Эту же замену произведем в (4.6) и получим общую формулу для векторного элемента поверхности:

. (4.10)

В сферических и цилиндрических координатах эта формула принимает вид:

; (4.11)

. (4.12)

 

Произведя такую же замену в элементе объема, записанном в декартовой системе координат

, (4.13)

получим элемент объема в криволинейной ортогональной системе координат:

. (4.14)

В сферической и цилиндрической системах:

; (4.15)

. (4.16)







Дата добавления: 2015-10-12; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия