Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструирование основных типов векторных интегралов.





Криволинейные интегралы скалярного и векторного характера строятся при использовании векторного элемента длины (1.2), который в криволинейной ортогональной системе согласно (2.7) имеют вид:

. (4.1)

В сферических и цилиндрических координатах имеем

; (4.2)

. (4.3)

Криволинейный интеграл скалярного типа получается, если в качестве подынтегрального выражения взять скалярное умножение вектор-функции на векторный элемент длины:

. (4.4)

А если вместо скалярного умножения составить векторное произведение, то получится интеграл векторного типа:

. (4.5)

Поверхностные интегралы двух типов конструируются аналогичным образом. Скалярный интеграл получится по аналогии с (4.4), где роль играет векторный элемент поверхности , который в декартовой системе координат имеет вид:

; (4.6)

. (4.7)

Если здесь скалярное произведение заменить векторным, то получится векторный интеграл. Для вычисления таких интегралов нам понадобятся формулы для векторных элементов длины и поверхности и элемента объема в криволинейных ортогональных системах координат. Перепишем (4.1), вводя туда элементарные длины (3.12):

. (4.8)

Сравним это выражение с (1.2) и видим, что (4.8) получается из (1.2) заменой

;

(4.9)

.

Эту же замену произведем в (4.6) и получим общую формулу для векторного элемента поверхности:

. (4.10)

В сферических и цилиндрических координатах эта формула принимает вид:

; (4.11)

. (4.12)

 

Произведя такую же замену в элементе объема, записанном в декартовой системе координат

, (4.13)

получим элемент объема в криволинейной ортогональной системе координат:

. (4.14)

В сферической и цилиндрической системах:

; (4.15)

. (4.16)







Дата добавления: 2015-10-12; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия