Студопедия — Конструирование основных типов векторных интегралов.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конструирование основных типов векторных интегралов.






Криволинейные интегралы скалярного и векторного характера строятся при использовании векторного элемента длины (1.2), который в криволинейной ортогональной системе согласно (2.7) имеют вид:

. (4.1)

В сферических и цилиндрических координатах имеем

; (4.2)

. (4.3)

Криволинейный интеграл скалярного типа получается, если в качестве подынтегрального выражения взять скалярное умножение вектор-функции на векторный элемент длины:

. (4.4)

А если вместо скалярного умножения составить векторное произведение, то получится интеграл векторного типа:

. (4.5)

Поверхностные интегралы двух типов конструируются аналогичным образом. Скалярный интеграл получится по аналогии с (4.4), где роль играет векторный элемент поверхности , который в декартовой системе координат имеет вид:

; (4.6)

. (4.7)

Если здесь скалярное произведение заменить векторным, то получится векторный интеграл. Для вычисления таких интегралов нам понадобятся формулы для векторных элементов длины и поверхности и элемента объема в криволинейных ортогональных системах координат. Перепишем (4.1), вводя туда элементарные длины (3.12):

. (4.8)

Сравним это выражение с (1.2) и видим, что (4.8) получается из (1.2) заменой

;

(4.9)

.

Эту же замену произведем в (4.6) и получим общую формулу для векторного элемента поверхности:

. (4.10)

В сферических и цилиндрических координатах эта формула принимает вид:

; (4.11)

. (4.12)

 

Произведя такую же замену в элементе объема, записанном в декартовой системе координат

, (4.13)

получим элемент объема в криволинейной ортогональной системе координат:

. (4.14)

В сферической и цилиндрической системах:

; (4.15)

. (4.16)







Дата добавления: 2015-10-12; просмотров: 396. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия