Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определители. 359. Шопенгауэр А. Эристика, или Искусство побеждать в спорах





359. Шопенгауэр А. Эристика, или Искусство побеждать в спорах. - СПб.: 1900.

 

КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ

ПО ВЫСШЕЙ МАТЕМАТИКЕ

 

 

Ростов-на-Дону

Составитель: Л.В. Сахарова

УДК 517

С 221

 

 

Настоящее пособие соответствует программе курса высшей математики технических учебных заведений и содержит краткий конспект лекций по темам «Определители», «Линейная алгебра», «Аналитическая геометрия», «Пределы», «Дифференциальное исчисление функции одной переменной», «Неопределенный интеграл», «Определенный интеграл», «Функции нескольких переменных», «Кратные и криволинейные интегралы». Используемые символика и терминология соответствуют учебным пособиям, рекомендуемым программой курса высшей математики.

 

 

Определители

1.1. Определители второго порядка.

Пусть дана квадратная таблица из четырех чисел :

Определителем второго порядка называют число, обозначаемое символом

и вычисляемое по правилу:

=

Элементы и лежат на главной диагонали, а элементы и – на побочной диагонали. Следовательно, чтобы вычислить определитель, надо из произведения чисел, стоящих на главной диагонали, вычесть произведение чисел, стоящих на побочной диагонали.

Пример 1. Вычислить

Решение.

= 3 2 - 4 = 6 + 20 = 26

 

Пример 2. Решить уравнение = 0

Решение.

= 0 => 1 (x+22) – 3x 4 = 0 => x+22 - 12x = 0 => 22-11x = 0; 11x = 22; x = 2.

Пример 3. Решить неравенство > 5

Решение.

> 5 => (2x – 2) 2 – 7x 1 > 5 => 4x – 4 – 7x > 5 => - 3x – 4 > 5;

3x < - 9; x < - 3

Примеры для самостоятельного решения.

Вычислить определители:

1). ; 2). ; 3).

Решить уравнения.

1) = 0; 2) =0; 3) = 0

Решить неравенства.

1) > 0; 2) < 0; 3) > 10

1.2. Определители третьего порядка.

Пусть задана квадратная таблица из девяти чисел:

Определителем третьего порядка, соответствующим этой таблице, называется число, обозначаемое символом и вычисляемое по правилу:

= a1b2c3 + a2b3c1+ b1c2a3 – a3b2c1- a2b1c3 – b3c2a1

Пример 1. Вычислить

Решение.

= 1 (- 1) (- 2) + 2 5 6 + 4 (-7) 3 - 3 (-1) 6 - 2 4 (- 2) – 5 (- 7) 1 = 2 + 60 – 84 + 18 + 16 + 35 = 47.

Пример 2. Решить уравнение: = 0

Решение.

= 0 => 1 5 5 + 4 (-1) x + 3 (-1) 2 – 2 5 x - 4 3 5 – (-1) (-1) 1 = 0

25 – 4 x – 6 – 10 x – 60 – 1 = 0 => - 14 x – 42 = 0; 14 x = – 42; x = - 3.

Пример 3. Решить неравенство: < 1

Решение.

< 1 => 3 x (-1) + 1 2 1+ (-2) (-2) (-1) – (-1) x 1 – 1(-2) (-1) – 2(-2) 3 < 1

-3 x + 2 – 4 + x + 12 – 2 < 1; - 2 x + 8 < 1; 2 x > 7; x >

Решить самостоятельно:

Вычислить определители:

1). ; 2). ; 3)

Решить уравнения:

1). = 0; 2). = 0

Решить неравенство:

> 0

1.2. Решение систем трех-линейных уравнений с тремя неизвестными методом Крамера.

Рассмотрим систему уравнений:

с неизвестными x y z

Введем обозначения:

∆ = ; ∆ x = ; ∆ y = ; ∆ z =

Имеет место теорема:

Если определитель системы ∆ ≠ 0, то система имеет единственное правильное решение, которое может быть получено по формулам Крамера:

x = ; y = ; z =

Пример. Решить систему уравнений:

Решение.

∆ = = 10; ∆ x = = 5; ∆ y = = 20; ∆ z = = 15;

x= = = ; y = = = 2; z = = =

 

Решить системы уравнений:

1). 2). 3).







Дата добавления: 2014-12-06; просмотров: 643. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия