Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение векторов





Векторным произведением вектора на вектор называется вектор , обозначаемый символом или и определяемый условиями:

 

1) 1) вектор перпендикулярен своим перемножаемым векторам: и , следовательно перпендикулярен к плоскости этих векторов

2) Тройка векторов и - правая, т.е. если смотреть с конца вектора , то кратчайший поворот от вектора к вектору осуществляется против часовой стрелки;

3) .

Геометрический смысл векторного произведения: = S параллелограмма, т.е. модуль векторного произведения численно равен площади параллелограмма, построенного на векторах и :

Иначе, площадь параллелограмма, построенного на векторах и , численно равна модулю векторного произведения векторов и :

Свойства векторного произведения:

1)

2)

3)

4) , если ненулевые векторы коллинеарны.

Если векторы и заданы координатами:

, то векторное произведение x вычисляется по формуле:

Например, если , то

Задача 1. Заданы координаты вершин треугольника АВС: А(1; -1; 0), В(3; 1; 1), С(-1; 0; 2). Найти его площадь.

С
А
Решение.

Задача 2.Найти длину опущенной на вектор высоты параллелограмма, построенного на векторах и .

Решение.

 

, с другой стороны

. Подставляя в формулу, получаем

Задачи для самостоятельного решения:

1) Найти

2) Векторы и являются сторонами параллелограмма. Найти площадь параллелограмма, построенного на его диагоналях.

3) Найти длину опущенной на сторону АС высоты треугольника АВС, если А(2; -1; -1), В(1; 1; 2), С(-1; -1; 3).







Дата добавления: 2014-12-06; просмотров: 822. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия