Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение векторов





Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними:

(1)

Поскольку , то (2)

Свойства скалярного произведения:

1)

2)

3)

4) Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы взаимно перпендикулярны:

(3)

Из формул (1) и (2) получаются формулы, наиболее часто используемые при решении задач:

Cos ; (4); (5).

Пусть векторы заданы координатами:

. Тогда

Cos (

=

, если , т.е.

Задача 1. Найти , если А (3; 2; -1), В (-1; 1; 2), С(5; 3; -3).

Решение.

Задача 2. Найти угол между диагоналями параллелограмма, построенного на векторах и .

Решение.

 

 

Требуется найти угол между векторами и .

Cos(

Следовательно ( = arccos .

Задача 3. При каком значении l векторы и взаимно перпендикулярны?

Решение.

Векторы взаимно перпендикулярны, если их скалярное произведение равно нулю:

, т.е.

Задача 4. Даны координаты вершин треугольника АВС:

А(-3; 4; 1), В(0; 4; -2), С(1; 2; 2). Найти

Решение.

Обозначим через и найдем координаты этого вектора:

Задачи для самостоятельного решения.

1) Даны векторы и . Найти

2) Даны координаты вершин треугольника АВС: А(2; 2; 4), В(3; 1; 0), С(1; 0; 2). Найти углы треугольника и .

3) Даны последовательные вершины 4-угольника:

А(3; α; -1), В(2; 1; α), С(2α; -3; -1). При каком α его диагонали взаимно перпендикулярны?







Дата добавления: 2014-12-06; просмотров: 790. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия