Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскость и прямая в пространстве





Y
X
Z

Плоскость в декартовой прямоугольной системе координат Oxyz может быть задана уравнением одного из следующих видов:

1) - общее уравнение плоскости, в котором коэффициенты А, В, С являются координатами вектора нормали: .

2) A - уравнение плоскости, проходящей через точку перпендикулярно вектору

3) - уравнение плоскости, проходящей через три заданные точки: , ,

Угол ß между двумя плоскостями

Находится как угол между их векторами нормалей и

Условие параллельности двух плоскостей:

, (т.е. )

Условие перпендикулярности двух плоскостей:

, (т.е. , поскольку )

Пример 1. Уравнение плоскости, проходящей через точку А (3; -1; 2) перпендикулярно вектору (2; -2; 1) имеет вид: , т.е. (уравнение (2)).

Пример 2. Уравнение плоскости, проходящей через точки , , имеет вид (уравнение (3)):

, т.е.

Пример3. Угол между плоскостями и найдется по формуле (4):

Прямая в пространстве может быть задана одним из следующих уравнений:

1) - канонические уравнения прямой.

Эта прямая проходит через заданную точку параллельно направляющему вектору .

2) - уравнение прямой в параметрическом виде.

3) - уравнение прямой, прохлдящей через две заданные точки и .

Z
4) - уравнение прямой, заданной как пересечение двух плоскостей.

 
 


 
O

       
   
Y
 
 

 


Пусть заданы две прямые:

и

Угол ß между двумя прямыми в пространстве находится как угол между их направляющими векторами и :

(5)

Условие параллельности двух прямых в пространстве:

(т.е. )

Условие перпендикулярности двух прямых:

(т.е. =0, поскольку )

Пример 1. Составить уравнение прямой, проходящей через точку параллельно прямой

Решение.

У заданной прямой направляющий вектор . Поскольку искомая прямая ей параллельна, то вектор можно принять за ее направляющий вектор и тогда (используя уравнение (1)) получаем:

Пример 2. Написать параметрическое уравнение прямой, проходящей через точки и .

Решение.

Составляем уравнение прямой по формуле (3):

. Получили уравнение прямой в каноническом виде. Чтобы привести его к параметрическому виду, приравниваем его к t:

= t

Пример 3. Записать в каноническом виде уравнение прямой, заданной как пересечение плоскостей:

Решение.

Чтобы записать уравнение прямой в каноническом виде, надо найти направляющий вектор этой прямой и какую-либо точку этой прямой. Найти точку- это значит найти какое-либо решение системы уравнений. Положим z = 0, тогда

, получим точку .

l l
Поскольку направляющий вектор

 

перпендикулярен к векторам нормалей обеих плоскостей, его можно получить как векторное произведение векторов нормалей и .

, т.е.

Уравнение прямой l имеет вид:







Дата добавления: 2014-12-06; просмотров: 734. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия