Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кванторы





Рассмотрим предложения:

В любой треугольник можно вписать окружность.

Всякое число, оканчивающееся на четную цифру, делится на 2.

В этих предложениях встречаются слова «любой», «всякое». Эти слова заменяют специальным символом. Значок называется квантором всеобщности.

- всякий, любой, каждый.

( х) Р (х), где х U – запись, говорящая о том, что любой х из предметной области U обладает свойством Р.

Например. Пусть Р (х) предикат, выражающий для х N свойство быть простым числом. Тогда ( х) (х N) Р (х) - ложное высказывание «любое натуральное число является простым».

Наряду с квантором всеобщности в логике предикатов рассматривается квантор существования: Его значок .

( х) Р (х) – существует такой х, который обладает свойством Р.

Например. Пусть Р (х) предикат, выражающий для х N свойство быть простым числом. Тогда, ( х) (х N) Р (х) - истинное высказывание «существует натуральное число, которое является простым».

Операция введения квантора называется операцией навешивания квантора. Навешивание квантора по какой-нибудь переменной понижает местность предиката.

Переменная, по которой навешен квантор, называется связанной.

Например. х< у - двухместный предикат. Навесим квантор:

( х) (х N) (х< у) предикат одноместный по переменной у.

Таким образом, понизить местность предиката можно двумя способами.

1. задать предметной переменной конкретное значение.

2. навесить кванторы по одной или нескольким переменным.

Квантор всеобщности можно рассматривать как обобщение конъюнкции для конечных и бесконечных множеств.

Квантор существования можно рассматривать как обобщение дизъюнкции для конечных и бесконечных множеств.







Дата добавления: 2014-10-22; просмотров: 991. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия