Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проекция точки на выпуклые множества





Расстояние d от точки v до множества Х в евклидовом пространстве определяется по формуле d = inf ê ê v - х ê ê;.

xÎ Х

Определение 3.3. Точка р Î называется проекцией точки v на множество Х, если ê ê v - р ê ê = inf ê ê v - х ê ê;.

xÎ Х

Теорема 3.5. Для любого множества Х ¹ Æ и любой точки v существует точка рÎ , являющаяся проекцией точки v.

Доказательство. Если vÎ X, то p = v, d =0. Пусть vÎ X. Так как X¹ Æ, то существует точка у Î Х. Рассмотрим множество:

Y={x/x Î Х, //v-x//£ //v-y//}. (3.4)

Очевидно, что расстояние от v до х совпадает с расстоянием от v до Y и проекция точки v на X совпадает с проекциейточки v на Y (если эта проекция существует). Найдем проекцию v на Y. В силу определения нижней грани существует последовательность {xk}Ì Y, такая что

lim // v - xk // = d (3.5)

k ¥

Из ограниченности Y следует ограниченность последовательности {xk}, поэтому из неё можно выделить последовательность {xki} такую что

lim xki = p, (3.6)

i ¥

где Ì .

Окончательно получаем также, что // v - p // = d, т.е. p есть проекция точки v.

Теорема 3.6. Для того, чтобы точка рÎ была проекцией точки vÎ Еn на выпуклое множество Х необходимо и достаточно, чтобы для любого xÎ Х выполнялось неравенство

< (x-p), (v-p)> £ 0. (3.7)

По определению скалярного произведения

 
 


< (x-p), (v- p)> = ||x -p|| × || v-p|| cos((x-p), (v-p)), (3.8)

то есть знак скалярного произведения определяется углом между векторами (x-p) и (v-p). Таким образом (см. рисунок 3.4) точка тогда и только тогда является проекцией v когда угол между (x-p) и (v-p) не острый для любой точки хÎ .

 

v

p

x

X

Рис. 3. 4.

 

Доказательство

1.Необходимость. Пусть р проекция точки v на Х. Если , то p = v и неравенство (3.7) обращается в равенство.

Рассмотрим случай, когда . Возьмем произвольную точку хÎ и рассмотрим

z(a)= (1-a)p + a x, где aÎ [0, 1] (3.9)

Так как р – проекция, то

0 £ ||x - z(a)||2 + || v-p||2=-2a < (x-p), (v-p)> + a2|| x-p||2 (3.10)

для всех aÎ [0, 1]. Это неравенство возможно при всех aÎ [0, 1] лишь в том случае, если выполняется неравенство (3.7).

2. Достаточность. Пусть (3.7) справедливо для любого хÎ , тогда для любого xÎ Х получим:

|| v-x||2 = ||(v -p)+(p-x)||2 =|| v-p||2 + 2 < (v-p), (p -x)> + || p -x||2³ || v-p||2

т.е. p есть проекция v на X

Следствие 3.2. Проекция любой точки vÎ Еn на выпуклое множество Х единственна.

Доказательство. Если , то p=v. Если , то || v-x||> 0 для всякого хÎ . Допустим, что кроме проекции р точки v существует ещё проекция p' ¹ p. Для них || р-р' ||> 0, || v-р|| = || v-р' ||. Тогда

|| v-p||2 = ||(v –p’)+(p’-p)||2 =|| v-p||2 + 2 < (v-p’), (p-p)> +|| p’-p||2.

Откуда следует что || v-p||2> ||(v –p’)||. Полученное противоречие доказывает теорему.

Следует сделать замечание, что для множества, не являющегося выпуклым, следствие может не выполняться (см. рис. 3.5)

р1

v

Х р2

 

Рис. 3. 5







Дата добавления: 2014-12-06; просмотров: 1056. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия