Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклые множества





Рассмотрим множество вида

[x, y]={z/z=(1-a)x+ay, aÎ [0, 1], zÎ En}. (3.1)

Это отрезок прямой, проходящей через точки x и y, так как уравнение прямой, проходящей через точки x и y имеет вид:

z(a)=x+a(y-х)=(1-a)x+ay, (3.2)

причемпри a =0 Z(a)=x, при a=1 Z(a)=у.

Если a пробегает значения между 0 и 1, то Z(a) пробегает значения по прямой между x и y.

Определение 3.1. Множество ХÎ Еn называется выпуклым, если для любых

х точек х, уÎ Х отрезок [х, y ]Î Х.

Если при этом (х, y)Ì X0 (X0- множество

z(a) внутренних точек множества Х), то Х называется строго выпуклым множеством.

y Из этого определения следует, что у выпуклого множества для любых х, уÎ Х и aÎ [0, 1] точка z(a) = (1-a)x + a y Î Х, если Х – строго выпуклое множество, то

Рис. 3.1. при aÎ (0, 1) z(a) является внутренней точкой множества Х.

На рис. 3.2. приведен пример выпуклого множества, а на рис. 3.3 пример множества, не являющегося выпуклым.


 

 
 


 

Рис. 3.2 Рис. 3.3.

Для выпуклых множеств справедливы следующие теоремы:

Теорема 3.1. Пересечение любого числа выпуклых множеств выпукло.

Доказательство. Пусть Z = Ç Хl Возьмем х, уÎ Z и aÎ [0, 1].

lÎ L

Покажем, что z(a)= (1-a)x + a y. Действительно, т. к. х, уÎ Z, то для любого lÎ L х, уÎ Хl. Из выпуклостимножеств Хl следует, что z(a)Î Хl для всех lÎ L, поэтому z(a)Î Z, откуда следует выпуклость множества Z.

Теорема 3.2. Множество Х={x / < a, x> £ b, xÎ En }, где а – заданный вектор, b - скаляр, является выпуклым множеством.

Доказательство.

Пусть х, уÎ Z и aÎ [0, 1], докажем, что z(a)= (1-a)x + ay. Действительно

< z(a), a> = < (1-a)x + a y, a> = (1-a)< x, a> + a < y, a>

Так как

х, уÎ Х, то есть < x, a> £ b, < у, a> £ b, то < z(a), a> £ b, т.е. z(a)Î Х.

Следствие 3.1. Множество Х={x / Ах £ b, xÎ En }, где А – матрица размерности m× n, bÎ En выпукло.

Определение 3.2. Точка z = ai xi называется выпуклой комбинацией точек х1, х2, …, хn Î En, если ai ³ 0, i = , ai = 1.

Теорема 3.3. Выпуклое множество содержит любые выпуклые комбинации любых своих точек.

Доказательство. Пусть Х – выпуклое множество, содержащее элементы хi,, i= , Произвольная система точек ai ³ 0 такова, что a i = 1. Покажем, что Z = aixi Î X.. Доказательство будем проводить методом математической индукции. При n=2 утверждение следует из определения 3.1, если положить:

a2 = a, a1 = 1- a.

Пусть утверждение верно для некоторого n ³ 2, покажем его справедливость для n+1.

Пусть Z= ai xi, где xi Î X, ai ³ 0, i= , +1, ai=1,

Z= aixi+an+1 xn+1 = = (1 - an+1 ) xi + an+1 xn+1.

По предположению точка x' = xi Î X, т. к. xi Î X,,

³ 0, i = , =1.

В силу выпуклости Х и определения 3.1 следует, что ZÎ X.

Теорема 3.4. Замыкание выпуклого множества Х выпукло.

Доказательство. Пусть х, у Î , a Î [0, 1]. Из определения замыкания множества следует, что в Х существуют последовательности {xk}, {yk} такие, что xk x, yk y при k ¥. В силу выпуклости множества Х точка zk(a)= (1-a)xk + a yk. Î X для любого целого k. Переходя к пределу при k ¥ в силу определения замыкания множества, получаем, что

z(a)= (1-a)x + a y Î (3.3)







Дата добавления: 2014-12-06; просмотров: 1328. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия