Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выпуклые множества





Рассмотрим множество вида

[x, y]={z/z=(1-a)x+ay, aÎ [0, 1], zÎ En}. (3.1)

Это отрезок прямой, проходящей через точки x и y, так как уравнение прямой, проходящей через точки x и y имеет вид:

z(a)=x+a(y-х)=(1-a)x+ay, (3.2)

причемпри a =0 Z(a)=x, при a=1 Z(a)=у.

Если a пробегает значения между 0 и 1, то Z(a) пробегает значения по прямой между x и y.

Определение 3.1. Множество ХÎ Еn называется выпуклым, если для любых

х точек х, уÎ Х отрезок [х, y ]Î Х.

Если при этом (х, y)Ì X0 (X0- множество

z(a) внутренних точек множества Х), то Х называется строго выпуклым множеством.

y Из этого определения следует, что у выпуклого множества для любых х, уÎ Х и aÎ [0, 1] точка z(a) = (1-a)x + a y Î Х, если Х – строго выпуклое множество, то

Рис. 3.1. при aÎ (0, 1) z(a) является внутренней точкой множества Х.

На рис. 3.2. приведен пример выпуклого множества, а на рис. 3.3 пример множества, не являющегося выпуклым.


 

 
 


 

Рис. 3.2 Рис. 3.3.

Для выпуклых множеств справедливы следующие теоремы:

Теорема 3.1. Пересечение любого числа выпуклых множеств выпукло.

Доказательство. Пусть Z = Ç Хl Возьмем х, уÎ Z и aÎ [0, 1].

lÎ L

Покажем, что z(a)= (1-a)x + a y. Действительно, т. к. х, уÎ Z, то для любого lÎ L х, уÎ Хl. Из выпуклостимножеств Хl следует, что z(a)Î Хl для всех lÎ L, поэтому z(a)Î Z, откуда следует выпуклость множества Z.

Теорема 3.2. Множество Х={x / < a, x> £ b, xÎ En }, где а – заданный вектор, b - скаляр, является выпуклым множеством.

Доказательство.

Пусть х, уÎ Z и aÎ [0, 1], докажем, что z(a)= (1-a)x + ay. Действительно

< z(a), a> = < (1-a)x + a y, a> = (1-a)< x, a> + a < y, a>

Так как

х, уÎ Х, то есть < x, a> £ b, < у, a> £ b, то < z(a), a> £ b, т.е. z(a)Î Х.

Следствие 3.1. Множество Х={x / Ах £ b, xÎ En }, где А – матрица размерности m× n, bÎ En выпукло.

Определение 3.2. Точка z = ai xi называется выпуклой комбинацией точек х1, х2, …, хn Î En, если ai ³ 0, i = , ai = 1.

Теорема 3.3. Выпуклое множество содержит любые выпуклые комбинации любых своих точек.

Доказательство. Пусть Х – выпуклое множество, содержащее элементы хi,, i= , Произвольная система точек ai ³ 0 такова, что a i = 1. Покажем, что Z = aixi Î X.. Доказательство будем проводить методом математической индукции. При n=2 утверждение следует из определения 3.1, если положить:

a2 = a, a1 = 1- a.

Пусть утверждение верно для некоторого n ³ 2, покажем его справедливость для n+1.

Пусть Z= ai xi, где xi Î X, ai ³ 0, i= , +1, ai=1,

Z= aixi+an+1 xn+1 = = (1 - an+1 ) xi + an+1 xn+1.

По предположению точка x' = xi Î X, т. к. xi Î X,,

³ 0, i = , =1.

В силу выпуклости Х и определения 3.1 следует, что ZÎ X.

Теорема 3.4. Замыкание выпуклого множества Х выпукло.

Доказательство. Пусть х, у Î , a Î [0, 1]. Из определения замыкания множества следует, что в Х существуют последовательности {xk}, {yk} такие, что xk x, yk y при k ¥. В силу выпуклости множества Х точка zk(a)= (1-a)xk + a yk. Î X для любого целого k. Переходя к пределу при k ¥ в силу определения замыкания множества, получаем, что

z(a)= (1-a)x + a y Î (3.3)







Дата добавления: 2014-12-06; просмотров: 1328. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия