Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА СИММЕТРИЧНЫХ ЭЛЕМЕНТОВ





. Если бинарная операция на А ассоциативная и элемент A -симметризуем, то существует единственный элемент, симметричный к х.

Доказательство. Пусть (x) и (x)- элементы, симметричные к элементу х относительно ассоциативной бинарной операции , то есть

(x) x = x (x) = e, (17)

(x) x = x (x) = e. (18)

Отсюда по определению нейтрального элемента е и ассоциативно-сти бинарной операции , имеем

(x) = (x) е = (x) (x (x)) = ( (x) x) (x) = е (x) = (x),

то есть

(x) = (x).

ч.т.д.

. Если элемент х из А имеет симметричный элемент s (x) относительно ассоциативной бинарной операции , то все левые и все правые симметричные к х элементы совпадают с элементом s (х).

Доказательство. Свойство 2° является непосредственным следствием свойства 1°.

3 °. Если элементы х и у из А симметризуемы относительно ассоциативной бинарной операции , то их композиция х у также симметризуема и элемент s (y) s (x) является симметричным к х у.

Доказательство. Пусть s (y) и s (x) элементы, симметричные к: элементам х и у соответственно относительно ассоциативной бинарной операции . Тогда имеем

или ,

то есть элемент s (y) s (x) является левым симметричным к элементу х *у.

Аналогично, элемент s (y) s (x) является правым симметричным к элементу х у:

.

Итак s (y) s (x) является симметричным элементом к элементу х у.

ч.т.д

Свойство 3° кратко может быть записано в виде s (s y) = s (y) s (x).

Пример 43.

Пусть (Z; +) - алгебра типа (2). Целое число 3 из Z является противоположным кцелому числу -3, а целое число -5 к целому числу 5. Тогда (-5)+3= -2 является противоположным целым числом к целому числу (-3) +5 = 2, так как

((-5)+ 3)+(З+(-5))=0 и (3+(-5)) + ((-5)+ 3) =0.

4 °. Элемент х из А, симметризуемый относительно ассоциативной бинарной операции , является регулярным относительно .

Доказательство. Пусть х произвольный симметризуемый элемент из A, a s (x) -симметричный к х элемент. Предположим, что у и z из А - произвольные элементы, для которых выполнены условия:

x y = x z, (19)

y x = z x. (20)

Из равенства (19) имеем s (x) (x y) = s (x) (x z)

(s (x) x) y = (s(x) x) z

e y = e z

y = z

Мы показали, что x y = x z y = z.

Теперь из равенства (20) имеем

(y x) s (x) = (z x) s (x)

y (x s (x)) =z (x s (x))

y e = z e

y = z

то есть y x = z x y = z.

Из условий (21), (22) получаем, что х - регулярный элемент относительно бинарной операции на множестве А.

ч.т.д.

Свойство 4 ° можно сформулировать еще так:

Если элемент х из А симметризуем относительно ассоциативной бинарной операции , то в равенствах (19) и (20) для любых х, у из А, возможно " сокращение" на х то есть из этих равенств следует y = z.

Замечание. В некоторых учебных пособиях симметричный элемент к элементу х из А обозначается через х' или через х*.







Дата добавления: 2014-12-06; просмотров: 1014. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия