Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА СИММЕТРИЧНЫХ ЭЛЕМЕНТОВ





. Если бинарная операция на А ассоциативная и элемент A -симметризуем, то существует единственный элемент, симметричный к х.

Доказательство. Пусть (x) и (x)- элементы, симметричные к элементу х относительно ассоциативной бинарной операции , то есть

(x) x = x (x) = e, (17)

(x) x = x (x) = e. (18)

Отсюда по определению нейтрального элемента е и ассоциативно-сти бинарной операции , имеем

(x) = (x) е = (x) (x (x)) = ( (x) x) (x) = е (x) = (x),

то есть

(x) = (x).

ч.т.д.

. Если элемент х из А имеет симметричный элемент s (x) относительно ассоциативной бинарной операции , то все левые и все правые симметричные к х элементы совпадают с элементом s (х).

Доказательство. Свойство 2° является непосредственным следствием свойства 1°.

3 °. Если элементы х и у из А симметризуемы относительно ассоциативной бинарной операции , то их композиция х у также симметризуема и элемент s (y) s (x) является симметричным к х у.

Доказательство. Пусть s (y) и s (x) элементы, симметричные к: элементам х и у соответственно относительно ассоциативной бинарной операции . Тогда имеем

или ,

то есть элемент s (y) s (x) является левым симметричным к элементу х *у.

Аналогично, элемент s (y) s (x) является правым симметричным к элементу х у:

.

Итак s (y) s (x) является симметричным элементом к элементу х у.

ч.т.д

Свойство 3° кратко может быть записано в виде s (s y) = s (y) s (x).

Пример 43.

Пусть (Z; +) - алгебра типа (2). Целое число 3 из Z является противоположным кцелому числу -3, а целое число -5 к целому числу 5. Тогда (-5)+3= -2 является противоположным целым числом к целому числу (-3) +5 = 2, так как

((-5)+ 3)+(З+(-5))=0 и (3+(-5)) + ((-5)+ 3) =0.

4 °. Элемент х из А, симметризуемый относительно ассоциативной бинарной операции , является регулярным относительно .

Доказательство. Пусть х произвольный симметризуемый элемент из A, a s (x) -симметричный к х элемент. Предположим, что у и z из А - произвольные элементы, для которых выполнены условия:

x y = x z, (19)

y x = z x. (20)

Из равенства (19) имеем s (x) (x y) = s (x) (x z)

(s (x) x) y = (s(x) x) z

e y = e z

y = z

Мы показали, что x y = x z y = z.

Теперь из равенства (20) имеем

(y x) s (x) = (z x) s (x)

y (x s (x)) =z (x s (x))

y e = z e

y = z

то есть y x = z x y = z.

Из условий (21), (22) получаем, что х - регулярный элемент относительно бинарной операции на множестве А.

ч.т.д.

Свойство 4 ° можно сформулировать еще так:

Если элемент х из А симметризуем относительно ассоциативной бинарной операции , то в равенствах (19) и (20) для любых х, у из А, возможно " сокращение" на х то есть из этих равенств следует y = z.

Замечание. В некоторых учебных пособиях симметричный элемент к элементу х из А обозначается через х' или через х*.







Дата добавления: 2014-12-06; просмотров: 1014. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия