Студопедия — СВОЙСТВА СИММЕТРИЧНЫХ ЭЛЕМЕНТОВ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА СИММЕТРИЧНЫХ ЭЛЕМЕНТОВ






. Если бинарная операция на А ассоциативная и элемент A -симметризуем, то существует единственный элемент, симметричный к х.

Доказательство. Пусть (x) и (x)- элементы, симметричные к элементу х относительно ассоциативной бинарной операции , то есть

(x) x = x (x) = e, (17)

(x) x = x (x) = e. (18)

Отсюда по определению нейтрального элемента е и ассоциативно-сти бинарной операции , имеем

(x) = (x) е = (x) (x (x)) = ( (x) x) (x) = е (x) = (x),

то есть

(x) = (x).

ч.т.д.

. Если элемент х из А имеет симметричный элемент s (x) относительно ассоциативной бинарной операции , то все левые и все правые симметричные к х элементы совпадают с элементом s (х).

Доказательство. Свойство 2° является непосредственным следствием свойства 1°.

3 °. Если элементы х и у из А симметризуемы относительно ассоциативной бинарной операции , то их композиция х у также симметризуема и элемент s (y) s (x) является симметричным к х у.

Доказательство. Пусть s (y) и s (x) элементы, симметричные к: элементам х и у соответственно относительно ассоциативной бинарной операции . Тогда имеем

или ,

то есть элемент s (y) s (x) является левым симметричным к элементу х *у.

Аналогично, элемент s (y) s (x) является правым симметричным к элементу х у:

.

Итак s (y) s (x) является симметричным элементом к элементу х у.

ч.т.д

Свойство 3° кратко может быть записано в виде s (s y) = s (y) s (x).

Пример 43.

Пусть (Z; +) - алгебра типа (2). Целое число 3 из Z является противоположным кцелому числу -3, а целое число -5 к целому числу 5. Тогда (-5)+3= -2 является противоположным целым числом к целому числу (-3) +5 = 2, так как

((-5)+ 3)+(З+(-5))=0 и (3+(-5)) + ((-5)+ 3) =0.

4 °. Элемент х из А, симметризуемый относительно ассоциативной бинарной операции , является регулярным относительно .

Доказательство. Пусть х произвольный симметризуемый элемент из A, a s (x) -симметричный к х элемент. Предположим, что у и z из А - произвольные элементы, для которых выполнены условия:

x y = x z, (19)

y x = z x. (20)

Из равенства (19) имеем s (x) (x y) = s (x) (x z)

(s (x) x) y = (s(x) x) z

e y = e z

y = z

Мы показали, что x y = x z y = z.

Теперь из равенства (20) имеем

(y x) s (x) = (z x) s (x)

y (x s (x)) =z (x s (x))

y e = z e

y = z

то есть y x = z x y = z.

Из условий (21), (22) получаем, что х - регулярный элемент относительно бинарной операции на множестве А.

ч.т.д.

Свойство 4 ° можно сформулировать еще так:

Если элемент х из А симметризуем относительно ассоциативной бинарной операции , то в равенствах (19) и (20) для любых х, у из А, возможно " сокращение" на х то есть из этих равенств следует y = z.

Замечание. В некоторых учебных пособиях симметричный элемент к элементу х из А обозначается через х' или через х*.







Дата добавления: 2014-12-06; просмотров: 915. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2024 год . (0.032 сек.) русская версия | украинская версия