Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА РЕГУЛЯРНЫХ ЭЛЕМЕНТОВ





 

. Если на множестве А существует нейтральный элементе, относительно бинарной операции , то он регулярен относи-

тельно .

Доказательство. Из определения нейтрального элемента е следует выполнение условий:

,

которые равносильны условиям (11). Следовательно, е является регулярным относительно бинарной операции .

ч.т.д.

. Если элементы r и r регулярны относительно ассоциативной бинарной операции на А, то их композиция r r также является регулярным элементом относительно .

Доказательство. Пусть r и r - регулярные элементы из А относительно бинарной операции . Пусть х, у - элементы из А, удовлетворяющие условиям:

, (12)

, (13)

Поскольку бинарная операция ассоциативная, то из (12) получаем

,

откуда в силу регулярности элемента r имеем r х = r у, далее, в силу регулярности элемента r получаем х =у.

Итак,

, то есть элемент r r - регулярен слева.

Аналогично доказывается, что элемент r r -регулярен справа:

(13) .

Следовательно, элемент r r является регулярным на А относительно .

ч.т.д.

. Если элемент r регулярен относительно бинарной операции на А, то он регулярен и относительно бинарной операции */A , индуцированной этой операцией на каждом замкнутом относительно подмножестве A , содержащем r (но элемент из A может быть регулярным в A , не будучи регулярным в А).

п. 7. Симметричные элементы.

Когда речь идет о симметричных элементах алгебры (А; ), то всегда имеется ввиду существование нейтрального элемента е.

Пусть A = (A; , e) - алгебра типа (2, 0).

ОПРЕДЕЛЕНИЕ 17. Элемент s (х) из А называется левымсимметричным к элементу х из А относительно бинарной операции , если выполняется условие:

s (х) x = e. (14)

ОПРЕДЕЛЕНИЕ 18. Элемент s (x) из А называется правымсимметричным к элементу x из А относительно бинарной опера-ции , если выполняется условие:

x s (x) = е.. (15)

ОПРЕДЕЛЕНИЕ 19. Элемент s (x) из А называется симметричным к элементу х из А относительно бинарной операции , если он является левым и правым симметричным к x, то есть выполняются условия:

s (x) x = x s (x). 6)

Если для элемента х из А существует симметричный элемент s (x) относительно бинарной операции , то х называется симметризуемым. Элементы х и s (x) называются взаимносимметричными.

При аддитивной записи бинарной операции , симметричный к элементу х относительно сложения " + " элемент называется противоположным и обозначается через (). Элементы х и (- x) называются взаимно противоположными. Для них выполняются условия

(- х) + х = х + (- x)= 0. (161)

При мультипликативной записи бинарной операции , симметричный к элементу х относительно умножения “ “ элемент называется обратным и обозначается через х . Элементы х и х называются взаимно обратными. Для них выполняются условия:

. (16 )







Дата добавления: 2014-12-06; просмотров: 840. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия