Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пространство волновых функций





1. Объектом изучения в квантовой механике являются механические системы, положение которых в пространстве характеризуется обобщенными координатами qi, i = 1, …, s, где s – число степеней свободы.

2. Будем рассматривать случаи, когда состояние квантовомеханической системы можно описать с помощью комплекснозначных функций обобщенных координат qi: y(q) = y(q 1, …, qs), являющихся элементами линейного пространства A над полем комплексных чисел C. На эти функции накладываются требования дифференцируемости необходимое число раз и квадратичной интегрируемости. В квантовой механике эти функции называются волновыми функциями.

3. На пространстве волновых функций определяется скалярное произведение функций

, (1)

где dsq = dq 1dqs – элемент координатного объема в конфигурационном пространстве механической системы. В частности скалярный квадрат функции

,

 

что объясняет необходимость наложения на волновые функции условия квадратичной интегрируемости.

Из (1) вытекает следующее свойство скалярного произведения

. (1¢)

4. С помощью скалярного произведения (1) вводится понятие нормы вектора y(q), или его длины:

, (2)

так как интеграл положителен везде в области определения функции y(q) и обращается в ноль только при y(q) = 0.

Легко видеть, что (2) действительно обладает всеми свойствами нормы:

причем тогда и только тогда, когда y = 0;

; (3)

(неравенство треугольника).

5. Пространство A может быть конечномерным или бесконечномерным. В последнем случае число измерений может быть как счетно, так и несчетно. Такое пространство со скалярным произведением (1) называется гильбертовым пространством.

6. Наряду с пространством A волновых функций y(q), заданных в некоторой области конфигурационного пространства механической системы можно рассматривать пространство Acket абстрактных векторов над полем комплексных чисел C, такое, что свертка его с вектором из сопряженного абстрактного пространства Abra будет давать скалярное произведение (1)

. (4)

Векторы называются кэт-векторами, а векторы бра-векторами соответствующего состояния, описываемого волновой функцией, стоящей в скобках. Названия происходят от разбиения на слоги слова «bra-cket» – «скобка» (Дирак). С абстрактными векторами и можно работать также как с самими волновыми функциями, рассматриваемыми как векторы: умножать на числа и складывать. При этом будут получаться другие векторы из пространств Acket и Abra соответственно. Только теперь векторы и нельзя рассматривать как некоторые комплекснозначные функции обобщенных координат. Но они так же, как и сами функции y(q) и j(q) будут рассматриваться как метки некоторого состояния квантовой системы.

Число можно представлять себе как результат скалярного произведения бра-вектора на кэт-вектор : .

7. Волновая функция y(q) может представлять собой набор волновых функций col(y1(q), …, y N (q)) – координат некоторого вектора в N -мерном линейном пространстве, каждая из которых является, в свою очередь, элементом линейного пространства A. В этом случае скалярное произведение (1) определяется как

(5)

Знак + используется для обозначения т.н. эрмитовского сопряжения, которое в случае конечномерных пространств представляет собой сочетание двух действий: комплексного сопряжения и транспонирования (превращение столбцов в строки и наоборот). Смысл абстрактных векторов и при этом, в принципе, не меняется. Можно рассматривать многокомпонентные вектор-строки

и вектор-столбцы

,

перемножая их слева направо по правилу «строка на столбец». Однако, все это уже, в принципе, заложено в символах и . В дальнейшем будем говорить, что операция эрмитовского сопряжения + переводит кэт-векторы в бра-векторы и наоборот, понимая ее в этом случае абстрактно в такой же мере, в какой мере абстрактными являются сами векторы :

. (6)

Тогда, например, свойство (1¢) может быть получено путем естественного применения операции эрмитового сопряжения +, понимаемой как сочетание операции комплексного сопряжения и транспонирования в смысле, определенном в (6).

 

Учебные вопросы

 

1. Сформулируйте определение скалярного произведения волновых функций.

2. Дайте определение нормы волновой функции.

3. Как вводятся в рассмотрение абстрактные векторы состояния Дирака (кэт- и бра-векторы)?

4. Как обобщается понятие скалярного произведения на случай многокомпонентных собственных функций?

 

 







Дата добавления: 2014-10-29; просмотров: 1407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия