Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Случайные величины и их характеристики





Величина, которая в зависимости от обстоятельств может принимать различные значения, называется случайной.

Таким образом случайная величина характеризуется возможными значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются.

Совместное рассмотрение нескольких случайных величин приводит к системам случайных величин (например, координаты точки попадания снаряда, оценки наудачу взятого абитуриента и т.д.).

Существуют дискретные и непрерывные случайные величины, для которых определены соответственно законы или функции распределения, а также принятые на практике числовые характеристики.

 

Дискретные и непрерывные случайные величины (СВ)

 

Закон распределения дискретной случайной величины устанавливает связь между возможными значениями СВ х и соответствующими им вероятностями p, что можно представить в табличном виде:

х1 х2 хk
p1 p2 pk

 

Функцией распределения непрерывной СВ называется функция

F(x), выражающая вероятность того, что значение случайной величины Х, меньше чем х:

F(x) = .

Плотность вероятности непрерывной СВ: при этом .

Вероятность попадания значения СВ в заданный интервал (а; b):

.

Числовые характеристики СВ:

Математическое ожидание МХ = xipi

или МХ= - среднее значение СВ в центре ее распределения.

Дисперсия (рассеяние) DX = М[(x - MX)2] = (xi –M(x))2pi

или - мера рассеяния данной СВпо отношению к ее ожиданию

Среднее квадратичное отклонение: .

 

Пример 14. Дан законраспределения дискретной случайной величины(ДСВ):

 

х          
р 0, 1 0, 2 0, 4 0, 2 0, 1

Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение для заданного распределения, найти моду ДСВ.

Решение: МХ = ∑ xipi = 2 4 0, 2 + 7 0, 4 + 9 0, 2 +11 0, 1 = 6, 7

Для нахождения DХ по соответствующей формуле, вместо (хi – МХ)2 Рi найдем М(х2) согласно таблице:

 

х          
р 0, 1 0, 2 0, 4 0, 2 0, 1

 

М(х2) = 4 0, 1 + 16 0, 2 + 49 0, 4 + 81 0, 2 + 121 0, 1 = 0, 4 + 3, 2 + 19, 6 + 16, 2 +12, 1 = 51, 5

DX = )) – М2(х) = 51, 5 – 6, 72 = 6, 61

= = 2, 57, Мо = 7(рмах =0, 4).

 

Пример 15. Непрерывная СВ задана функцией распределения

 

F(x) =

Найдите: f(x), МХ, DX, р .

Решение:

f(x) = МХ = ;

 

DX =

 

= = 0, 236; р = F - F = .

 







Дата добавления: 2014-11-10; просмотров: 1256. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия