Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простой алгоритм заполнения с затравкой





В алгоритмах заполнения с затравкой предполагается, что известен хотя бы один пиксел из внутренней области многоугольника. Алгоритм пытается найти и закрасить все другие пикселы, принадлежащие внутренней области. Области могут быть либо внутренне-, либо гранично-определенными. Если область относится к внутренне-определенным, то все пикселы, принадлежащие внутренней части, имеют один и тот же цвет или интенсивность, а все пикселы, внешние по отношению к области, имеют другой цвет. Это продемонстрировано на рис. 2.12. Если область относится к гранично-определенным, то все пикселы на границе области имеют выделенное значение или цвет, как это показано на рис. 2.13. Ни один из пикселов из внутренней части такой области не может иметь это выделенное значение. Тем не менее пикселы, внешние по отношению к границе, также могут иметь граничное значение. Алгоритмы, заполняющие внутренне-определенные области, называются внутренне-заполняющими, а алгоритмы для гранично-определенных областей - гранично-заполняющими. Далее будут обсуждаться гранично-заполняющие алгоритмы, однако соответствующие внутренне-заполняющие алгоритмы можно получить аналогичным образом.

Внутренне- или гранично-определенные области могут быть 4-или 8-связными. Если область 4-связная, то любого пиксела в области можно достичь с помощью комбинации движений только в 4 направлениях: налево, направо, вверх, вниз. Для 8-связной области пиксела можно достичь с помощью комбинации движений в двух горизонтальных, двух вертикальных и 4 диагональных направлениях (рис. 2.14).

Далее речь в основном пойдет об алгоритмах для 4-связных областей, однако их можно легко переделать для 8-связных областей, если заполнение проводить не в 4, а в 8 направлениях.

Используя стек, можно разработать простой алгоритм заполнения гранично-определенной области. Стек - это просто массив или другая структура данных, в которую можно последовательно пометить значения и из которой их можно последовательно извлекать. Когда новые значения добавляются или помещаются в стек, все остальные значения опускаются вниз на один уровень. Когда значения удаляются или извлекаются из стека, остальные значения всплывают или поднимаются вверх на один уровень. Такой стек называется стеком прямого действия. Простой алгоритм заполнения с затравкой можно представить в следующем виде:

Простой алгоритм заполнения с затравкой и стеком.
Поместить затравочный пиксел в стек
Пока стек не пуст
Извлечь пиксел из стека
Присвоить пикселу требуемое значение
Для каждого из соседних к текущему 4-связных пикселов проверить: является ли он граничным пикселом или не присвоено ли уже пикселу требуемое значение. Проигнорировать пиксел в любом из этих двух случаев. В противном случае поместить пиксел в стек.

Приведем более формальное изложение алгоритма, в котором предполагается существование затравочного пиксела и гранично-определенной области:
Затравка(х, у) - выдает затравочный пиксел
Push - процедура, которая помещает пиксел в стек
Pop - процедура, которая извлекает пиксел из стека

Пиксел(х, у) = Затравка(х, у)  
Push Пиксел(х, у) while (стек не пуст) / инициализируем стек
Pop Пиксел(х, у) if Пиксел(х, у) < > Нов_значение then Пиксел(х, у) = Нов_значение end if / извлекаем пиксел из стека
if (Пиксел(х + 1, у) < > Нов_значение and Пиксел(х + 1, у) < > Гран_значение) then Push Пиксел (х + 1, у) if (Пиксел(х, у + 1) < > Нов_значение and Пиксел(х, у + 1) < > Гран_значение) then Push Пиксел (х, у + 1) if (Пиксел(х - 1, у) < > Нов_значение and Пиксел(х - 1, у) < > Гран_значение) then Push Пиксел (х - 1, у) if (Пиксел(х, у — 1) < > Нов_значение and Пиксел(х, у - 1) < > Гран_значение) then Push Пиксел (х, у - 1) end if end while  

Пример 2.3. Алгоритм заполнения многоугольника с затравкой. В качестве примера применения алгоритма рассмотрим гранично-определенную область, содержащую дыру. Она изображена на рис. 2.15.

Вершины многоугольника заданы пикселами (1, 0), (7, 0), (8, 1), (8, 4), (6, 6), (1, 6), (0, 5) и (0, 1). Внутренняя дыра определяется пикселами (3, 2), (5, 2), (5, 3), (3, 3). Затравочный пиксел — (4, 4). Порядок заполнения указан на рисунке линией со стрелками. Числа в квадратике пиксела показывают позицию в стеке, занимаемую пикселом. Когда обработка доходит до пиксела (3, 1), все окружающие его 4-связные пикселы либо уже заполнены, либо являются граничными. Поэтому ни один из пикселов не помещается в стек. Глубина стека в этот момент равна 15. В стеке находятся пикселы (7, 1), (7, 2), (7, 3), (6, 5), (7, 4), (6, 5), (3, 1), (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5), (5, 4).

После удаления из стека пиксела (7, 1) заполняется колонка (7, 1), (7, 2), (7, 3), (7, 4), при этом ни один новый пиксел в стек не добавляется. Для пиксела (7, 4) снова все 4-связные окружающие пикселы либо уже заполнены, либо являются граничными. Обращаясь к стеку, алгоритм извлекает пиксел (6, 5), его заполнение завершает заполнение всего многоугольника. Дальнейшая o6работка происходит без какого-либо заполнения, и когда стек становится пустым, алгоритм завершает работу.







Дата добавления: 2014-11-10; просмотров: 4581. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия