Сплайны
Сплайн - кусочный полином степени K с непрерывной производной степени K-1 в точках соединения сегментов.
Далее нас будут интересовать кубические сплайны.
Понятие сплайна пришло из машиностроения, где сплайном называли гибкую линейку, закрепив которую в нужных местах, добивались плавной кривой, которую затем чертили по этой линейке (см. Рис. 7) Форма такой линейки, если ее рассматривать как функцию y(x), будет удовлетворять уравнению Эйлера-Бернулли: , где M(x) - момент изгиба вдоль рейки, E - модуль Юнга. зависящий от свойств материала рейки, I - момент инерции, определяемый формой кривой. Если мы фиксируем некоторые точки подпорками, то момент изгиба на каждом отрезке меняется по линейному закону: M(x) = A*x + B, подставляя в исходное уравнение получаем: , дважды интегрируя получаем уравнение кривой на данном
1) Для N отрезков имеем 4N коэффициентов: для ; 2) Условия (i Î ) дают 2N уравнений; 3) Требование в точках (i Î ) дает N-1 уравнений; 4) Требование в точках (i Î ) дает N-1 уравнений.
Итого имеем 4N-2 уравнения; для того чтобы система была определенной, необходимы еще 2 уравнения; их можно вывести, например, из заданных значений производных на границах или из условия периодичности. При корректно заданных условиях линейная относительно система имеет единственное решение. Подробнее смотри в Ошибка! Источник ссылки не найден..
|