Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическая нормальная линейная модель множественной регрессии





Соотношение (24) называется классической нормальной линейной моделью множественной регрессии, если выполняются следующие условия:

  • X – детерминированная матрица;
  • e1, …, e n – независимые нормальные одинаково распределенные случайные величины: e i ~ N(0, s2 ) M(e i e j)=0 при i ¹ j;
  • ранг матрицы X равен p +1, и p +1< n.

Справедлива теорема Гаусса-Маркова: В условиях классической нормальной линейной модели множественной регрессии* оценки (28)являются эффективными (т. е. имеют наименьшую дисперсию) в классе всех линейных несмещенных оценок.

Кроме того, можно доказать (см., например, [5]), что в условиях классической нормальной модели множественной регрессии оценки (28) обладают следующими свойствами#:

1. b – несмещенная оценка вектора b (Mb =b).

2. Ковариационная матрица оценок b может быть вычислена по формуле:

Db =s2(X ¢ X)-1. (31)

3. bj (j =0, 1, …, p) являются нормальными случайными величинами.

4. Остаточная сумма квадратов Qe независима от b, а статистика

(32)

имеет распределение хи-квадрат с числом степеней свободы n - p -1 (c2 n - p -1).

5. Статистика s 2:

(32а)

является несмещенной оценкой дисперсии возмущений (Ms 2=s2).

Значение числа степеней свободы n - p -1 можно объяснить следующим образом: из n наблюдений необходимо потратить p +1 наблюдений на оценку параметров регрессии.







Дата добавления: 2014-11-10; просмотров: 1081. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия