Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическая нормальная линейная модель множественной регрессии





Соотношение (24) называется классической нормальной линейной моделью множественной регрессии, если выполняются следующие условия:

  • X – детерминированная матрица;
  • e1, …, e n – независимые нормальные одинаково распределенные случайные величины: e i ~ N(0, s2 ) M(e i e j)=0 при i ¹ j;
  • ранг матрицы X равен p +1, и p +1< n.

Справедлива теорема Гаусса-Маркова: В условиях классической нормальной линейной модели множественной регрессии* оценки (28)являются эффективными (т. е. имеют наименьшую дисперсию) в классе всех линейных несмещенных оценок.

Кроме того, можно доказать (см., например, [5]), что в условиях классической нормальной модели множественной регрессии оценки (28) обладают следующими свойствами#:

1. b – несмещенная оценка вектора b (Mb =b).

2. Ковариационная матрица оценок b может быть вычислена по формуле:

Db =s2(X ¢ X)-1. (31)

3. bj (j =0, 1, …, p) являются нормальными случайными величинами.

4. Остаточная сумма квадратов Qe независима от b, а статистика

(32)

имеет распределение хи-квадрат с числом степеней свободы n - p -1 (c2 n - p -1).

5. Статистика s 2:

(32а)

является несмещенной оценкой дисперсии возмущений (Ms 2=s2).

Значение числа степеней свободы n - p -1 можно объяснить следующим образом: из n наблюдений необходимо потратить p +1 наблюдений на оценку параметров регрессии.







Дата добавления: 2014-11-10; просмотров: 1081. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия