Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение перемещений методом Мора





Рассмотрим теперь общий метод определения перемещений, пригодный для любой линейно-деформируемой системы при любой нагрузке. Этот метод предложен выдающимся немецким ученым О. Мором.

Пусть, например, требуется определить вертикальное перемещение точки В балки, представленной на рис. 5.13 а. Заданное (грузовое) состояние обозначим f. Выберем вспомогательное состояние той же балки с единичной (безразмерной) силой, действующей в точке В в направлении искомого перемещения. Вспомогательное состояние обозначим k (рис. 5.13 б).

Определим работу внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния.

Работа внешних сил равна произведению единичной силы на искомое перемещение :

 

(5.34)

 

а работа внутренних сил равна интегралу:

(5.35)

 

Но или (5.36)

 

  a)     б)

 

 


Рис. 5.13


Эта формула и есть формула Мора (интеграл Мора), которая дает возможность определить перемещение в любой точке линейно-деформируемой системы.

В этой формуле подынтегральное произведение MkMf положительно, если оба изгибающих момента имеют одинаковый знак, и отрицательно, если Mk и Mf имеют разные знаки.

Если бы мы определяли угловое перемещение в точке В, то в состоянии k следовало бы приложить в точке В момент, равный единице (без размерности).

Обозначая Δ любое перемещение (линейное или угловое), формулу (интеграл) Мора напишем в виде

(5.37)

 

В общем случае аналитические выражения Mk, Mf, может быть различным на разных участках балки или вообще упругой системы. Поэтому следует пользоваться более общей формулой

(5.38)

 

Если стержни систем работают на изгиб и растяжение, то следует пользоваться формулой

(5.39)

 

В частном случае, когда стержни работают только на растяжение или сжатие (фермы), формула для определения перемещений имеет вид

(5.40)

 

В этой формуле произведение Nk Nf, положительно, если оба усилия растягивающие или сжимающие.

При расчете рам, когда стержни работают одновременно и на изгиб, и на растяжение (сжатие), в обычных случаях, как показывают сравнительные расчеты, перемещения можно определять, учитывая лишь изгибающие моменты, так как влияние продольных сил весьма мало. По тем же соображениям, в обычных случаях можно не учитывать влияния поперечных сил.

Если состояния f и k одинаковы, то получим:

(5.41)

 







Дата добавления: 2014-11-10; просмотров: 1041. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия