Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разностные схемы, записанные в дивергентной форме





Для системы уравнений газовой динамики

Рассмотрим систему одномерных уравнений газовой динамики, записанных в декартовых координатах в дивергентной форме:

,

где .

Здесь плотность полной энергии и уравнение состояния:

Запишем схему с весами для системы уравнений газовой динамики:

. (30)

Схема является консервативной и аппроксимирует систему уравнений (30) с порядком .

При схема нелинейная относительно верхнего временного слоя и для ее безытерационной реализации линеаризуем вектор относительно вектора . Для этого разложим вектор по формуле Тейлора с точностью до членов второго порядка:

,

где матрица Якоби, а аппроксимация производной . Заменяя вектор в схеме (30) получаем канонический вид схемы:

. (31)

Уравнение (31) линейно относительно вектора и может быть решено векторной прогонкой. При симметричной аппроксимации, входящих в него разностных операторов, оно сводится к следующему трехточечному уравнению:

коэффициенты которого вычисляются по формулам:

Здесь используется однородность функции .

Рассмотрим случай идеального газа. В этом случае уравнение состояния , где и .

Найдем коэффициенты матрицы .

Обозначим ,

тогда =

и . Для коэффициентов матрицы В имеем:

, , ,

,

,

.

Задание. Найти самостоятельно коэффициенты , , .

В итоге получаем следующую матрицу :

.

Исследуем устойчивость схемы (31) для уравнений с замороженными коэффициентами (матрица В постоянная). При решении характеристического уравнения получаем следующие корни (в случае симметричной аппроксимации):

.

Здесь - квадрат скорости звука и . При схема безусловно устойчивая.

Параметрическая схема с весами для решения полной системы уравнений Навье-Стокса

Изменяется вектор гидродинамического потока. Появляются в системе уравнений производные второго порядка по пространственным переменным. Одномерная дивергентная система уравнений Навье – Стокса записывается в виде

, (32)

где

Для разностного решения системы (32) воспользуемся следующей схемой с весами:

. (33)

Здесь вектор потока , где . Схема нелинейная и для построения безытерационной схемы необходимо линеаризовать вектор . По формуле Тейлора для функции двух переменных получаем:

.

Изменяя порядок дифференцирования и используя матрицы Якоби, имеем:

. Здесь матрица .

Для построения канонического вида разностной схемы преобразуем третье слагаемое уравнения.

. Здесь матрица .

Замечание. Для аппроксимации производной используется разностный оператор

, где .

Заменяя в схеме (33) значение вектора потока и преобразуя уравнение, получаем следующий канонический вид линеаризованной схемы с весами для системы уравнений Навье – Стокса:

.

Полученная схема аппроксимирует систему уравнений (32) с тем же порядком, что и схема (30) и в линейном приближении безусловно устойчива.

Вид матриц можно упростить, если в качестве искомых переменных выбирать вектор состояния не в массовых переменных, а один из векторов с газодинамическими переменными, например . В этом случае легче ставятся граничные условия и уменьшается число арифметических операций при реализации схемы.







Дата добавления: 2014-11-10; просмотров: 1101. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия